| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhnmo.1 |  |-  U = <. <. +h , .h >. , normh >. | 
						
							| 2 |  | hh0o.2 |  |-  Z = ( U 0op U ) | 
						
							| 3 | 1 | hhba |  |-  ~H = ( BaseSet ` U ) | 
						
							| 4 |  | df-ch0 |  |-  0H = { 0h } | 
						
							| 5 | 1 | hh0v |  |-  0h = ( 0vec ` U ) | 
						
							| 6 | 5 | sneqi |  |-  { 0h } = { ( 0vec ` U ) } | 
						
							| 7 | 4 6 | eqtri |  |-  0H = { ( 0vec ` U ) } | 
						
							| 8 | 3 7 | xpeq12i |  |-  ( ~H X. 0H ) = ( ( BaseSet ` U ) X. { ( 0vec ` U ) } ) | 
						
							| 9 |  | df0op2 |  |-  0hop = ( ~H X. 0H ) | 
						
							| 10 | 1 | hhnv |  |-  U e. NrmCVec | 
						
							| 11 |  | eqid |  |-  ( BaseSet ` U ) = ( BaseSet ` U ) | 
						
							| 12 |  | eqid |  |-  ( 0vec ` U ) = ( 0vec ` U ) | 
						
							| 13 | 11 12 2 | 0ofval |  |-  ( ( U e. NrmCVec /\ U e. NrmCVec ) -> Z = ( ( BaseSet ` U ) X. { ( 0vec ` U ) } ) ) | 
						
							| 14 | 10 10 13 | mp2an |  |-  Z = ( ( BaseSet ` U ) X. { ( 0vec ` U ) } ) | 
						
							| 15 | 8 9 14 | 3eqtr4i |  |-  0hop = Z |