Metamath Proof Explorer


Theorem hhba

Description: The base set of Hilbert space. This theorem provides an independent proof of df-hba (see comments in that definition). (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1
|- U = <. <. +h , .h >. , normh >.
Assertion hhba
|- ~H = ( BaseSet ` U )

Proof

Step Hyp Ref Expression
1 hhnv.1
 |-  U = <. <. +h , .h >. , normh >.
2 hilablo
 |-  +h e. AbelOp
3 ablogrpo
 |-  ( +h e. AbelOp -> +h e. GrpOp )
4 2 3 ax-mp
 |-  +h e. GrpOp
5 ax-hfvadd
 |-  +h : ( ~H X. ~H ) --> ~H
6 5 fdmi
 |-  dom +h = ( ~H X. ~H )
7 4 6 grporn
 |-  ~H = ran +h
8 eqid
 |-  ( BaseSet ` U ) = ( BaseSet ` U )
9 1 hhva
 |-  +h = ( +v ` U )
10 8 9 bafval
 |-  ( BaseSet ` U ) = ran +h
11 7 10 eqtr4i
 |-  ~H = ( BaseSet ` U )