| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhnmo.1 |  |-  U = <. <. +h , .h >. , normh >. | 
						
							| 2 |  | hhblo.2 |  |-  B = ( U BLnOp U ) | 
						
							| 3 |  | df-bdop |  |-  BndLinOp = { x e. LinOp | ( normop ` x ) < +oo } | 
						
							| 4 | 1 | hhnv |  |-  U e. NrmCVec | 
						
							| 5 |  | eqid |  |-  ( U normOpOLD U ) = ( U normOpOLD U ) | 
						
							| 6 | 1 5 | hhnmoi |  |-  normop = ( U normOpOLD U ) | 
						
							| 7 |  | eqid |  |-  ( U LnOp U ) = ( U LnOp U ) | 
						
							| 8 | 1 7 | hhlnoi |  |-  LinOp = ( U LnOp U ) | 
						
							| 9 | 6 8 2 | bloval |  |-  ( ( U e. NrmCVec /\ U e. NrmCVec ) -> B = { x e. LinOp | ( normop ` x ) < +oo } ) | 
						
							| 10 | 4 4 9 | mp2an |  |-  B = { x e. LinOp | ( normop ` x ) < +oo } | 
						
							| 11 | 3 10 | eqtr4i |  |-  BndLinOp = B |