Step |
Hyp |
Ref |
Expression |
1 |
|
hhnmo.1 |
|- U = <. <. +h , .h >. , normh >. |
2 |
|
hhblo.2 |
|- B = ( U BLnOp U ) |
3 |
|
df-bdop |
|- BndLinOp = { x e. LinOp | ( normop ` x ) < +oo } |
4 |
1
|
hhnv |
|- U e. NrmCVec |
5 |
|
eqid |
|- ( U normOpOLD U ) = ( U normOpOLD U ) |
6 |
1 5
|
hhnmoi |
|- normop = ( U normOpOLD U ) |
7 |
|
eqid |
|- ( U LnOp U ) = ( U LnOp U ) |
8 |
1 7
|
hhlnoi |
|- LinOp = ( U LnOp U ) |
9 |
6 8 2
|
bloval |
|- ( ( U e. NrmCVec /\ U e. NrmCVec ) -> B = { x e. LinOp | ( normop ` x ) < +oo } ) |
10 |
4 4 9
|
mp2an |
|- B = { x e. LinOp | ( normop ` x ) < +oo } |
11 |
3 10
|
eqtr4i |
|- BndLinOp = B |