| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhlm.1 |
|- U = <. <. +h , .h >. , normh >. |
| 2 |
|
hhlm.2 |
|- D = ( IndMet ` U ) |
| 3 |
|
hhlm.3 |
|- J = ( MetOpen ` D ) |
| 4 |
|
hhcmpl.c |
|- ( F e. ( Cau ` D ) -> E. x e. ~H F ( ~~>t ` J ) x ) |
| 5 |
4
|
anim1ci |
|- ( ( F e. ( Cau ` D ) /\ F e. ( ~H ^m NN ) ) -> ( F e. ( ~H ^m NN ) /\ E. x e. ~H F ( ~~>t ` J ) x ) ) |
| 6 |
|
elin |
|- ( F e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) <-> ( F e. ( Cau ` D ) /\ F e. ( ~H ^m NN ) ) ) |
| 7 |
|
r19.42v |
|- ( E. x e. ~H ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) <-> ( F e. ( ~H ^m NN ) /\ E. x e. ~H F ( ~~>t ` J ) x ) ) |
| 8 |
5 6 7
|
3imtr4i |
|- ( F e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) -> E. x e. ~H ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
| 9 |
1 2
|
hhcau |
|- Cauchy = ( ( Cau ` D ) i^i ( ~H ^m NN ) ) |
| 10 |
9
|
eleq2i |
|- ( F e. Cauchy <-> F e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) ) |
| 11 |
1 2 3
|
hhlm |
|- ~~>v = ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) |
| 12 |
11
|
breqi |
|- ( F ~~>v x <-> F ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) x ) |
| 13 |
|
vex |
|- x e. _V |
| 14 |
13
|
brresi |
|- ( F ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
| 15 |
12 14
|
bitri |
|- ( F ~~>v x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
| 16 |
15
|
rexbii |
|- ( E. x e. ~H F ~~>v x <-> E. x e. ~H ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
| 17 |
8 10 16
|
3imtr4i |
|- ( F e. Cauchy -> E. x e. ~H F ~~>v x ) |