Step |
Hyp |
Ref |
Expression |
1 |
|
hhlm.1 |
|- U = <. <. +h , .h >. , normh >. |
2 |
|
hhlm.2 |
|- D = ( IndMet ` U ) |
3 |
|
hhlm.3 |
|- J = ( MetOpen ` D ) |
4 |
|
hhcmpl.c |
|- ( F e. ( Cau ` D ) -> E. x e. ~H F ( ~~>t ` J ) x ) |
5 |
4
|
anim1ci |
|- ( ( F e. ( Cau ` D ) /\ F e. ( ~H ^m NN ) ) -> ( F e. ( ~H ^m NN ) /\ E. x e. ~H F ( ~~>t ` J ) x ) ) |
6 |
|
elin |
|- ( F e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) <-> ( F e. ( Cau ` D ) /\ F e. ( ~H ^m NN ) ) ) |
7 |
|
r19.42v |
|- ( E. x e. ~H ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) <-> ( F e. ( ~H ^m NN ) /\ E. x e. ~H F ( ~~>t ` J ) x ) ) |
8 |
5 6 7
|
3imtr4i |
|- ( F e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) -> E. x e. ~H ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
9 |
1 2
|
hhcau |
|- Cauchy = ( ( Cau ` D ) i^i ( ~H ^m NN ) ) |
10 |
9
|
eleq2i |
|- ( F e. Cauchy <-> F e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) ) |
11 |
1 2 3
|
hhlm |
|- ~~>v = ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) |
12 |
11
|
breqi |
|- ( F ~~>v x <-> F ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) x ) |
13 |
|
vex |
|- x e. _V |
14 |
13
|
brresi |
|- ( F ( ( ~~>t ` J ) |` ( ~H ^m NN ) ) x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
15 |
12 14
|
bitri |
|- ( F ~~>v x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
16 |
15
|
rexbii |
|- ( E. x e. ~H F ~~>v x <-> E. x e. ~H ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` J ) x ) ) |
17 |
8 10 16
|
3imtr4i |
|- ( F e. Cauchy -> E. x e. ~H F ~~>v x ) |