Metamath Proof Explorer


Theorem hhhl

Description: The Hilbert space structure is a complex Hilbert space. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhhl.1
|- U = <. <. +h , .h >. , normh >.
Assertion hhhl
|- U e. CHilOLD

Proof

Step Hyp Ref Expression
1 hhhl.1
 |-  U = <. <. +h , .h >. , normh >.
2 1 hhnv
 |-  U e. NrmCVec
3 eqid
 |-  ( IndMet ` U ) = ( IndMet ` U )
4 1 3 hhcms
 |-  ( IndMet ` U ) e. ( CMet ` ~H )
5 1 hhba
 |-  ~H = ( BaseSet ` U )
6 5 3 iscbn
 |-  ( U e. CBan <-> ( U e. NrmCVec /\ ( IndMet ` U ) e. ( CMet ` ~H ) ) )
7 2 4 6 mpbir2an
 |-  U e. CBan
8 1 hhph
 |-  U e. CPreHilOLD
9 ishlo
 |-  ( U e. CHilOLD <-> ( U e. CBan /\ U e. CPreHilOLD ) )
10 7 8 9 mpbir2an
 |-  U e. CHilOLD