Description: The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
hhims.2 | |- D = ( normh o. -h ) |
||
Assertion | hhims | |- D = ( IndMet ` U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
2 | hhims.2 | |- D = ( normh o. -h ) |
|
3 | 1 | hhnv | |- U e. NrmCVec |
4 | 1 | hhvs | |- -h = ( -v ` U ) |
5 | 1 | hhnm | |- normh = ( normCV ` U ) |
6 | eqid | |- ( IndMet ` U ) = ( IndMet ` U ) |
|
7 | 4 5 6 | imsval | |- ( U e. NrmCVec -> ( IndMet ` U ) = ( normh o. -h ) ) |
8 | 3 7 | ax-mp | |- ( IndMet ` U ) = ( normh o. -h ) |
9 | 2 8 | eqtr4i | |- D = ( IndMet ` U ) |