Metamath Proof Explorer


Theorem hhims

Description: The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1
|- U = <. <. +h , .h >. , normh >.
hhims.2
|- D = ( normh o. -h )
Assertion hhims
|- D = ( IndMet ` U )

Proof

Step Hyp Ref Expression
1 hhnv.1
 |-  U = <. <. +h , .h >. , normh >.
2 hhims.2
 |-  D = ( normh o. -h )
3 1 hhnv
 |-  U e. NrmCVec
4 1 hhvs
 |-  -h = ( -v ` U )
5 1 hhnm
 |-  normh = ( normCV ` U )
6 eqid
 |-  ( IndMet ` U ) = ( IndMet ` U )
7 4 5 6 imsval
 |-  ( U e. NrmCVec -> ( IndMet ` U ) = ( normh o. -h ) )
8 3 7 ax-mp
 |-  ( IndMet ` U ) = ( normh o. -h )
9 2 8 eqtr4i
 |-  D = ( IndMet ` U )