Metamath Proof Explorer


Theorem hhims2

Description: Hilbert space distance metric. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1
|- U = <. <. +h , .h >. , normh >.
hhims2.2
|- D = ( IndMet ` U )
Assertion hhims2
|- D = ( normh o. -h )

Proof

Step Hyp Ref Expression
1 hhnv.1
 |-  U = <. <. +h , .h >. , normh >.
2 hhims2.2
 |-  D = ( IndMet ` U )
3 eqid
 |-  ( normh o. -h ) = ( normh o. -h )
4 1 3 hhims
 |-  ( normh o. -h ) = ( IndMet ` U )
5 2 4 eqtr4i
 |-  D = ( normh o. -h )