Description: Hilbert space distance metric. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
hhims2.2 | |- D = ( IndMet ` U ) |
||
Assertion | hhims2 | |- D = ( normh o. -h ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
2 | hhims2.2 | |- D = ( IndMet ` U ) |
|
3 | eqid | |- ( normh o. -h ) = ( normh o. -h ) |
|
4 | 1 3 | hhims | |- ( normh o. -h ) = ( IndMet ` U ) |
5 | 2 4 | eqtr4i | |- D = ( normh o. -h ) |