Description: The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hhlno.1 | |- U = <. <. +h , .h >. , normh >. |
|
hhlno.2 | |- L = ( U LnOp U ) |
||
Assertion | hhlnoi | |- LinOp = L |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhlno.1 | |- U = <. <. +h , .h >. , normh >. |
|
2 | hhlno.2 | |- L = ( U LnOp U ) |
|
3 | df-lnop | |- LinOp = { t e. ( ~H ^m ~H ) | A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) } |
|
4 | 1 | hhnv | |- U e. NrmCVec |
5 | 1 | hhba | |- ~H = ( BaseSet ` U ) |
6 | 1 | hhva | |- +h = ( +v ` U ) |
7 | 1 | hhsm | |- .h = ( .sOLD ` U ) |
8 | 5 5 6 6 7 7 2 | lnoval | |- ( ( U e. NrmCVec /\ U e. NrmCVec ) -> L = { t e. ( ~H ^m ~H ) | A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) } ) |
9 | 4 4 8 | mp2an | |- L = { t e. ( ~H ^m ~H ) | A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) } |
10 | 3 9 | eqtr4i | |- LinOp = L |