Metamath Proof Explorer


Theorem hhlnoi

Description: The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhlno.1
|- U = <. <. +h , .h >. , normh >.
hhlno.2
|- L = ( U LnOp U )
Assertion hhlnoi
|- LinOp = L

Proof

Step Hyp Ref Expression
1 hhlno.1
 |-  U = <. <. +h , .h >. , normh >.
2 hhlno.2
 |-  L = ( U LnOp U )
3 df-lnop
 |-  LinOp = { t e. ( ~H ^m ~H ) | A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) }
4 1 hhnv
 |-  U e. NrmCVec
5 1 hhba
 |-  ~H = ( BaseSet ` U )
6 1 hhva
 |-  +h = ( +v ` U )
7 1 hhsm
 |-  .h = ( .sOLD ` U )
8 5 5 6 6 7 7 2 lnoval
 |-  ( ( U e. NrmCVec /\ U e. NrmCVec ) -> L = { t e. ( ~H ^m ~H ) | A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) } )
9 4 4 8 mp2an
 |-  L = { t e. ( ~H ^m ~H ) | A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) }
10 3 9 eqtr4i
 |-  LinOp = L