Metamath Proof Explorer


Theorem hhmetdval

Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1
|- U = <. <. +h , .h >. , normh >.
hhims2.2
|- D = ( IndMet ` U )
Assertion hhmetdval
|- ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) )

Proof

Step Hyp Ref Expression
1 hhnv.1
 |-  U = <. <. +h , .h >. , normh >.
2 hhims2.2
 |-  D = ( IndMet ` U )
3 1 hhnv
 |-  U e. NrmCVec
4 1 hhba
 |-  ~H = ( BaseSet ` U )
5 1 3 4 2 h2hmetdval
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) )