Step |
Hyp |
Ref |
Expression |
1 |
|
hhnv.1 |
|- U = <. <. +h , .h >. , normh >. |
2 |
|
hilablo |
|- +h e. AbelOp |
3 |
|
ablogrpo |
|- ( +h e. AbelOp -> +h e. GrpOp ) |
4 |
2 3
|
ax-mp |
|- +h e. GrpOp |
5 |
|
ax-hfvadd |
|- +h : ( ~H X. ~H ) --> ~H |
6 |
5
|
fdmi |
|- dom +h = ( ~H X. ~H ) |
7 |
4 6
|
grporn |
|- ~H = ran +h |
8 |
|
hilid |
|- ( GId ` +h ) = 0h |
9 |
8
|
eqcomi |
|- 0h = ( GId ` +h ) |
10 |
|
hilvc |
|- <. +h , .h >. e. CVecOLD |
11 |
|
normf |
|- normh : ~H --> RR |
12 |
|
norm-i |
|- ( x e. ~H -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
13 |
12
|
biimpa |
|- ( ( x e. ~H /\ ( normh ` x ) = 0 ) -> x = 0h ) |
14 |
|
norm-iii |
|- ( ( y e. CC /\ x e. ~H ) -> ( normh ` ( y .h x ) ) = ( ( abs ` y ) x. ( normh ` x ) ) ) |
15 |
|
norm-ii |
|- ( ( x e. ~H /\ y e. ~H ) -> ( normh ` ( x +h y ) ) <_ ( ( normh ` x ) + ( normh ` y ) ) ) |
16 |
7 9 10 11 13 14 15 1
|
isnvi |
|- U e. NrmCVec |