| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhsst.1 |
|- U = <. <. +h , .h >. , normh >. |
| 2 |
|
hhsst.2 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
| 3 |
|
hhssp3.3 |
|- W e. ( SubSp ` U ) |
| 4 |
|
hhssp3.4 |
|- H C_ ~H |
| 5 |
|
eqid |
|- ( BaseSet ` W ) = ( BaseSet ` W ) |
| 6 |
|
eqid |
|- ( +v ` W ) = ( +v ` W ) |
| 7 |
5 6
|
bafval |
|- ( BaseSet ` W ) = ran ( +v ` W ) |
| 8 |
1
|
hhnv |
|- U e. NrmCVec |
| 9 |
|
eqid |
|- ( SubSp ` U ) = ( SubSp ` U ) |
| 10 |
9
|
sspnv |
|- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> W e. NrmCVec ) |
| 11 |
8 3 10
|
mp2an |
|- W e. NrmCVec |
| 12 |
6
|
nvgrp |
|- ( W e. NrmCVec -> ( +v ` W ) e. GrpOp ) |
| 13 |
|
grporndm |
|- ( ( +v ` W ) e. GrpOp -> ran ( +v ` W ) = dom dom ( +v ` W ) ) |
| 14 |
11 12 13
|
mp2b |
|- ran ( +v ` W ) = dom dom ( +v ` W ) |
| 15 |
2
|
fveq2i |
|- ( +v ` W ) = ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
| 16 |
|
eqid |
|- ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
| 17 |
16
|
vafval |
|- ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( 1st ` ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) ) |
| 18 |
|
opex |
|- <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. e. _V |
| 19 |
|
normf |
|- normh : ~H --> RR |
| 20 |
|
ax-hilex |
|- ~H e. _V |
| 21 |
|
fex |
|- ( ( normh : ~H --> RR /\ ~H e. _V ) -> normh e. _V ) |
| 22 |
19 20 21
|
mp2an |
|- normh e. _V |
| 23 |
22
|
resex |
|- ( normh |` H ) e. _V |
| 24 |
18 23
|
op1st |
|- ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. |
| 25 |
24
|
fveq2i |
|- ( 1st ` ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) ) = ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) |
| 26 |
|
hilablo |
|- +h e. AbelOp |
| 27 |
|
resexg |
|- ( +h e. AbelOp -> ( +h |` ( H X. H ) ) e. _V ) |
| 28 |
26 27
|
ax-mp |
|- ( +h |` ( H X. H ) ) e. _V |
| 29 |
|
hvmulex |
|- .h e. _V |
| 30 |
29
|
resex |
|- ( .h |` ( CC X. H ) ) e. _V |
| 31 |
28 30
|
op1st |
|- ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) = ( +h |` ( H X. H ) ) |
| 32 |
25 31
|
eqtri |
|- ( 1st ` ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) ) = ( +h |` ( H X. H ) ) |
| 33 |
17 32
|
eqtri |
|- ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( +h |` ( H X. H ) ) |
| 34 |
15 33
|
eqtri |
|- ( +v ` W ) = ( +h |` ( H X. H ) ) |
| 35 |
34
|
dmeqi |
|- dom ( +v ` W ) = dom ( +h |` ( H X. H ) ) |
| 36 |
|
xpss12 |
|- ( ( H C_ ~H /\ H C_ ~H ) -> ( H X. H ) C_ ( ~H X. ~H ) ) |
| 37 |
4 4 36
|
mp2an |
|- ( H X. H ) C_ ( ~H X. ~H ) |
| 38 |
|
ax-hfvadd |
|- +h : ( ~H X. ~H ) --> ~H |
| 39 |
38
|
fdmi |
|- dom +h = ( ~H X. ~H ) |
| 40 |
37 39
|
sseqtrri |
|- ( H X. H ) C_ dom +h |
| 41 |
|
ssdmres |
|- ( ( H X. H ) C_ dom +h <-> dom ( +h |` ( H X. H ) ) = ( H X. H ) ) |
| 42 |
40 41
|
mpbi |
|- dom ( +h |` ( H X. H ) ) = ( H X. H ) |
| 43 |
35 42
|
eqtri |
|- dom ( +v ` W ) = ( H X. H ) |
| 44 |
43
|
dmeqi |
|- dom dom ( +v ` W ) = dom ( H X. H ) |
| 45 |
|
dmxpid |
|- dom ( H X. H ) = H |
| 46 |
44 45
|
eqtri |
|- dom dom ( +v ` W ) = H |
| 47 |
14 46
|
eqtri |
|- ran ( +v ` W ) = H |
| 48 |
7 47
|
eqtri |
|- ( BaseSet ` W ) = H |
| 49 |
48
|
eqcomi |
|- H = ( BaseSet ` W ) |