Step |
Hyp |
Ref |
Expression |
1 |
|
hhsst.1 |
|- U = <. <. +h , .h >. , normh >. |
2 |
|
hhsst.2 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
3 |
|
hhssp3.3 |
|- W e. ( SubSp ` U ) |
4 |
|
hhssp3.4 |
|- H C_ ~H |
5 |
|
eqid |
|- ( BaseSet ` W ) = ( BaseSet ` W ) |
6 |
|
eqid |
|- ( +v ` W ) = ( +v ` W ) |
7 |
5 6
|
bafval |
|- ( BaseSet ` W ) = ran ( +v ` W ) |
8 |
1
|
hhnv |
|- U e. NrmCVec |
9 |
|
eqid |
|- ( SubSp ` U ) = ( SubSp ` U ) |
10 |
9
|
sspnv |
|- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> W e. NrmCVec ) |
11 |
8 3 10
|
mp2an |
|- W e. NrmCVec |
12 |
6
|
nvgrp |
|- ( W e. NrmCVec -> ( +v ` W ) e. GrpOp ) |
13 |
|
grporndm |
|- ( ( +v ` W ) e. GrpOp -> ran ( +v ` W ) = dom dom ( +v ` W ) ) |
14 |
11 12 13
|
mp2b |
|- ran ( +v ` W ) = dom dom ( +v ` W ) |
15 |
2
|
fveq2i |
|- ( +v ` W ) = ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
16 |
|
eqid |
|- ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
17 |
16
|
vafval |
|- ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( 1st ` ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) ) |
18 |
|
opex |
|- <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. e. _V |
19 |
|
normf |
|- normh : ~H --> RR |
20 |
|
ax-hilex |
|- ~H e. _V |
21 |
|
fex |
|- ( ( normh : ~H --> RR /\ ~H e. _V ) -> normh e. _V ) |
22 |
19 20 21
|
mp2an |
|- normh e. _V |
23 |
22
|
resex |
|- ( normh |` H ) e. _V |
24 |
18 23
|
op1st |
|- ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. |
25 |
24
|
fveq2i |
|- ( 1st ` ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) ) = ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) |
26 |
|
hilablo |
|- +h e. AbelOp |
27 |
|
resexg |
|- ( +h e. AbelOp -> ( +h |` ( H X. H ) ) e. _V ) |
28 |
26 27
|
ax-mp |
|- ( +h |` ( H X. H ) ) e. _V |
29 |
|
hvmulex |
|- .h e. _V |
30 |
29
|
resex |
|- ( .h |` ( CC X. H ) ) e. _V |
31 |
28 30
|
op1st |
|- ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) = ( +h |` ( H X. H ) ) |
32 |
25 31
|
eqtri |
|- ( 1st ` ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) ) = ( +h |` ( H X. H ) ) |
33 |
17 32
|
eqtri |
|- ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( +h |` ( H X. H ) ) |
34 |
15 33
|
eqtri |
|- ( +v ` W ) = ( +h |` ( H X. H ) ) |
35 |
34
|
dmeqi |
|- dom ( +v ` W ) = dom ( +h |` ( H X. H ) ) |
36 |
|
xpss12 |
|- ( ( H C_ ~H /\ H C_ ~H ) -> ( H X. H ) C_ ( ~H X. ~H ) ) |
37 |
4 4 36
|
mp2an |
|- ( H X. H ) C_ ( ~H X. ~H ) |
38 |
|
ax-hfvadd |
|- +h : ( ~H X. ~H ) --> ~H |
39 |
38
|
fdmi |
|- dom +h = ( ~H X. ~H ) |
40 |
37 39
|
sseqtrri |
|- ( H X. H ) C_ dom +h |
41 |
|
ssdmres |
|- ( ( H X. H ) C_ dom +h <-> dom ( +h |` ( H X. H ) ) = ( H X. H ) ) |
42 |
40 41
|
mpbi |
|- dom ( +h |` ( H X. H ) ) = ( H X. H ) |
43 |
35 42
|
eqtri |
|- dom ( +v ` W ) = ( H X. H ) |
44 |
43
|
dmeqi |
|- dom dom ( +v ` W ) = dom ( H X. H ) |
45 |
|
dmxpid |
|- dom ( H X. H ) = H |
46 |
44 45
|
eqtri |
|- dom dom ( +v ` W ) = H |
47 |
14 46
|
eqtri |
|- ran ( +v ` W ) = H |
48 |
7 47
|
eqtri |
|- ( BaseSet ` W ) = H |
49 |
48
|
eqcomi |
|- H = ( BaseSet ` W ) |