Step |
Hyp |
Ref |
Expression |
1 |
|
xpeq1 |
|- ( H = if ( H e. SH , H , ~H ) -> ( H X. H ) = ( if ( H e. SH , H , ~H ) X. H ) ) |
2 |
|
xpeq2 |
|- ( H = if ( H e. SH , H , ~H ) -> ( if ( H e. SH , H , ~H ) X. H ) = ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) |
3 |
1 2
|
eqtrd |
|- ( H = if ( H e. SH , H , ~H ) -> ( H X. H ) = ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) |
4 |
3
|
reseq2d |
|- ( H = if ( H e. SH , H , ~H ) -> ( +h |` ( H X. H ) ) = ( +h |` ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) ) |
5 |
4
|
eleq1d |
|- ( H = if ( H e. SH , H , ~H ) -> ( ( +h |` ( H X. H ) ) e. AbelOp <-> ( +h |` ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) e. AbelOp ) ) |
6 |
|
helsh |
|- ~H e. SH |
7 |
6
|
elimel |
|- if ( H e. SH , H , ~H ) e. SH |
8 |
7
|
hhssabloi |
|- ( +h |` ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) e. AbelOp |
9 |
5 8
|
dedth |
|- ( H e. SH -> ( +h |` ( H X. H ) ) e. AbelOp ) |