Step |
Hyp |
Ref |
Expression |
1 |
|
hhssabl.1 |
|- H e. SH |
2 |
1
|
hhssabloilem |
|- ( +h e. GrpOp /\ ( +h |` ( H X. H ) ) e. GrpOp /\ ( +h |` ( H X. H ) ) C_ +h ) |
3 |
2
|
simp2i |
|- ( +h |` ( H X. H ) ) e. GrpOp |
4 |
1
|
shssii |
|- H C_ ~H |
5 |
|
xpss12 |
|- ( ( H C_ ~H /\ H C_ ~H ) -> ( H X. H ) C_ ( ~H X. ~H ) ) |
6 |
4 4 5
|
mp2an |
|- ( H X. H ) C_ ( ~H X. ~H ) |
7 |
|
ax-hfvadd |
|- +h : ( ~H X. ~H ) --> ~H |
8 |
7
|
fdmi |
|- dom +h = ( ~H X. ~H ) |
9 |
6 8
|
sseqtrri |
|- ( H X. H ) C_ dom +h |
10 |
|
ssdmres |
|- ( ( H X. H ) C_ dom +h <-> dom ( +h |` ( H X. H ) ) = ( H X. H ) ) |
11 |
9 10
|
mpbi |
|- dom ( +h |` ( H X. H ) ) = ( H X. H ) |
12 |
1
|
sheli |
|- ( x e. H -> x e. ~H ) |
13 |
1
|
sheli |
|- ( y e. H -> y e. ~H ) |
14 |
|
ax-hvcom |
|- ( ( x e. ~H /\ y e. ~H ) -> ( x +h y ) = ( y +h x ) ) |
15 |
12 13 14
|
syl2an |
|- ( ( x e. H /\ y e. H ) -> ( x +h y ) = ( y +h x ) ) |
16 |
|
ovres |
|- ( ( x e. H /\ y e. H ) -> ( x ( +h |` ( H X. H ) ) y ) = ( x +h y ) ) |
17 |
|
ovres |
|- ( ( y e. H /\ x e. H ) -> ( y ( +h |` ( H X. H ) ) x ) = ( y +h x ) ) |
18 |
17
|
ancoms |
|- ( ( x e. H /\ y e. H ) -> ( y ( +h |` ( H X. H ) ) x ) = ( y +h x ) ) |
19 |
15 16 18
|
3eqtr4d |
|- ( ( x e. H /\ y e. H ) -> ( x ( +h |` ( H X. H ) ) y ) = ( y ( +h |` ( H X. H ) ) x ) ) |
20 |
3 11 19
|
isabloi |
|- ( +h |` ( H X. H ) ) e. AbelOp |