Step |
Hyp |
Ref |
Expression |
1 |
|
hhssabl.1 |
|- H e. SH |
2 |
|
hilablo |
|- +h e. AbelOp |
3 |
|
ablogrpo |
|- ( +h e. AbelOp -> +h e. GrpOp ) |
4 |
2 3
|
ax-mp |
|- +h e. GrpOp |
5 |
1
|
elexi |
|- H e. _V |
6 |
|
eqid |
|- ran +h = ran +h |
7 |
6
|
grpofo |
|- ( +h e. GrpOp -> +h : ( ran +h X. ran +h ) -onto-> ran +h ) |
8 |
|
fof |
|- ( +h : ( ran +h X. ran +h ) -onto-> ran +h -> +h : ( ran +h X. ran +h ) --> ran +h ) |
9 |
4 7 8
|
mp2b |
|- +h : ( ran +h X. ran +h ) --> ran +h |
10 |
1
|
shssii |
|- H C_ ~H |
11 |
|
df-hba |
|- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
12 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
13 |
12
|
hhva |
|- +h = ( +v ` <. <. +h , .h >. , normh >. ) |
14 |
11 13
|
bafval |
|- ~H = ran +h |
15 |
10 14
|
sseqtri |
|- H C_ ran +h |
16 |
|
xpss12 |
|- ( ( H C_ ran +h /\ H C_ ran +h ) -> ( H X. H ) C_ ( ran +h X. ran +h ) ) |
17 |
15 15 16
|
mp2an |
|- ( H X. H ) C_ ( ran +h X. ran +h ) |
18 |
|
fssres |
|- ( ( +h : ( ran +h X. ran +h ) --> ran +h /\ ( H X. H ) C_ ( ran +h X. ran +h ) ) -> ( +h |` ( H X. H ) ) : ( H X. H ) --> ran +h ) |
19 |
9 17 18
|
mp2an |
|- ( +h |` ( H X. H ) ) : ( H X. H ) --> ran +h |
20 |
|
ffn |
|- ( ( +h |` ( H X. H ) ) : ( H X. H ) --> ran +h -> ( +h |` ( H X. H ) ) Fn ( H X. H ) ) |
21 |
19 20
|
ax-mp |
|- ( +h |` ( H X. H ) ) Fn ( H X. H ) |
22 |
|
ovres |
|- ( ( x e. H /\ y e. H ) -> ( x ( +h |` ( H X. H ) ) y ) = ( x +h y ) ) |
23 |
|
shaddcl |
|- ( ( H e. SH /\ x e. H /\ y e. H ) -> ( x +h y ) e. H ) |
24 |
1 23
|
mp3an1 |
|- ( ( x e. H /\ y e. H ) -> ( x +h y ) e. H ) |
25 |
22 24
|
eqeltrd |
|- ( ( x e. H /\ y e. H ) -> ( x ( +h |` ( H X. H ) ) y ) e. H ) |
26 |
25
|
rgen2 |
|- A. x e. H A. y e. H ( x ( +h |` ( H X. H ) ) y ) e. H |
27 |
|
ffnov |
|- ( ( +h |` ( H X. H ) ) : ( H X. H ) --> H <-> ( ( +h |` ( H X. H ) ) Fn ( H X. H ) /\ A. x e. H A. y e. H ( x ( +h |` ( H X. H ) ) y ) e. H ) ) |
28 |
21 26 27
|
mpbir2an |
|- ( +h |` ( H X. H ) ) : ( H X. H ) --> H |
29 |
22
|
oveq1d |
|- ( ( x e. H /\ y e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) +h z ) = ( ( x +h y ) +h z ) ) |
30 |
29
|
3adant3 |
|- ( ( x e. H /\ y e. H /\ z e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) +h z ) = ( ( x +h y ) +h z ) ) |
31 |
|
ovres |
|- ( ( ( x ( +h |` ( H X. H ) ) y ) e. H /\ z e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) ( +h |` ( H X. H ) ) z ) = ( ( x ( +h |` ( H X. H ) ) y ) +h z ) ) |
32 |
25 31
|
stoic3 |
|- ( ( x e. H /\ y e. H /\ z e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) ( +h |` ( H X. H ) ) z ) = ( ( x ( +h |` ( H X. H ) ) y ) +h z ) ) |
33 |
|
ovres |
|- ( ( y e. H /\ z e. H ) -> ( y ( +h |` ( H X. H ) ) z ) = ( y +h z ) ) |
34 |
33
|
oveq2d |
|- ( ( y e. H /\ z e. H ) -> ( x +h ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y +h z ) ) ) |
35 |
34
|
3adant1 |
|- ( ( x e. H /\ y e. H /\ z e. H ) -> ( x +h ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y +h z ) ) ) |
36 |
28
|
fovcl |
|- ( ( y e. H /\ z e. H ) -> ( y ( +h |` ( H X. H ) ) z ) e. H ) |
37 |
|
ovres |
|- ( ( x e. H /\ ( y ( +h |` ( H X. H ) ) z ) e. H ) -> ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y ( +h |` ( H X. H ) ) z ) ) ) |
38 |
36 37
|
sylan2 |
|- ( ( x e. H /\ ( y e. H /\ z e. H ) ) -> ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y ( +h |` ( H X. H ) ) z ) ) ) |
39 |
38
|
3impb |
|- ( ( x e. H /\ y e. H /\ z e. H ) -> ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y ( +h |` ( H X. H ) ) z ) ) ) |
40 |
15
|
sseli |
|- ( x e. H -> x e. ran +h ) |
41 |
15
|
sseli |
|- ( y e. H -> y e. ran +h ) |
42 |
15
|
sseli |
|- ( z e. H -> z e. ran +h ) |
43 |
6
|
grpoass |
|- ( ( +h e. GrpOp /\ ( x e. ran +h /\ y e. ran +h /\ z e. ran +h ) ) -> ( ( x +h y ) +h z ) = ( x +h ( y +h z ) ) ) |
44 |
4 43
|
mpan |
|- ( ( x e. ran +h /\ y e. ran +h /\ z e. ran +h ) -> ( ( x +h y ) +h z ) = ( x +h ( y +h z ) ) ) |
45 |
40 41 42 44
|
syl3an |
|- ( ( x e. H /\ y e. H /\ z e. H ) -> ( ( x +h y ) +h z ) = ( x +h ( y +h z ) ) ) |
46 |
35 39 45
|
3eqtr4d |
|- ( ( x e. H /\ y e. H /\ z e. H ) -> ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) = ( ( x +h y ) +h z ) ) |
47 |
30 32 46
|
3eqtr4d |
|- ( ( x e. H /\ y e. H /\ z e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) ( +h |` ( H X. H ) ) z ) = ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) ) |
48 |
|
hilid |
|- ( GId ` +h ) = 0h |
49 |
|
sh0 |
|- ( H e. SH -> 0h e. H ) |
50 |
1 49
|
ax-mp |
|- 0h e. H |
51 |
48 50
|
eqeltri |
|- ( GId ` +h ) e. H |
52 |
|
ovres |
|- ( ( ( GId ` +h ) e. H /\ x e. H ) -> ( ( GId ` +h ) ( +h |` ( H X. H ) ) x ) = ( ( GId ` +h ) +h x ) ) |
53 |
51 52
|
mpan |
|- ( x e. H -> ( ( GId ` +h ) ( +h |` ( H X. H ) ) x ) = ( ( GId ` +h ) +h x ) ) |
54 |
|
eqid |
|- ( GId ` +h ) = ( GId ` +h ) |
55 |
6 54
|
grpolid |
|- ( ( +h e. GrpOp /\ x e. ran +h ) -> ( ( GId ` +h ) +h x ) = x ) |
56 |
4 40 55
|
sylancr |
|- ( x e. H -> ( ( GId ` +h ) +h x ) = x ) |
57 |
53 56
|
eqtrd |
|- ( x e. H -> ( ( GId ` +h ) ( +h |` ( H X. H ) ) x ) = x ) |
58 |
12
|
hhnv |
|- <. <. +h , .h >. , normh >. e. NrmCVec |
59 |
12
|
hhsm |
|- .h = ( .sOLD ` <. <. +h , .h >. , normh >. ) |
60 |
|
eqid |
|- ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) = ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) |
61 |
13 59 60
|
nvinvfval |
|- ( <. <. +h , .h >. , normh >. e. NrmCVec -> ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) = ( inv ` +h ) ) |
62 |
58 61
|
ax-mp |
|- ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) = ( inv ` +h ) |
63 |
62
|
eqcomi |
|- ( inv ` +h ) = ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) |
64 |
63
|
fveq1i |
|- ( ( inv ` +h ) ` x ) = ( ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) ` x ) |
65 |
|
ax-hfvmul |
|- .h : ( CC X. ~H ) --> ~H |
66 |
|
ffn |
|- ( .h : ( CC X. ~H ) --> ~H -> .h Fn ( CC X. ~H ) ) |
67 |
65 66
|
ax-mp |
|- .h Fn ( CC X. ~H ) |
68 |
|
neg1cn |
|- -u 1 e. CC |
69 |
60
|
curry1val |
|- ( ( .h Fn ( CC X. ~H ) /\ -u 1 e. CC ) -> ( ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) ` x ) = ( -u 1 .h x ) ) |
70 |
67 68 69
|
mp2an |
|- ( ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) ` x ) = ( -u 1 .h x ) |
71 |
|
shmulcl |
|- ( ( H e. SH /\ -u 1 e. CC /\ x e. H ) -> ( -u 1 .h x ) e. H ) |
72 |
1 68 71
|
mp3an12 |
|- ( x e. H -> ( -u 1 .h x ) e. H ) |
73 |
70 72
|
eqeltrid |
|- ( x e. H -> ( ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) ` x ) e. H ) |
74 |
64 73
|
eqeltrid |
|- ( x e. H -> ( ( inv ` +h ) ` x ) e. H ) |
75 |
|
ovres |
|- ( ( ( ( inv ` +h ) ` x ) e. H /\ x e. H ) -> ( ( ( inv ` +h ) ` x ) ( +h |` ( H X. H ) ) x ) = ( ( ( inv ` +h ) ` x ) +h x ) ) |
76 |
74 75
|
mpancom |
|- ( x e. H -> ( ( ( inv ` +h ) ` x ) ( +h |` ( H X. H ) ) x ) = ( ( ( inv ` +h ) ` x ) +h x ) ) |
77 |
|
eqid |
|- ( inv ` +h ) = ( inv ` +h ) |
78 |
6 54 77
|
grpolinv |
|- ( ( +h e. GrpOp /\ x e. ran +h ) -> ( ( ( inv ` +h ) ` x ) +h x ) = ( GId ` +h ) ) |
79 |
4 40 78
|
sylancr |
|- ( x e. H -> ( ( ( inv ` +h ) ` x ) +h x ) = ( GId ` +h ) ) |
80 |
76 79
|
eqtrd |
|- ( x e. H -> ( ( ( inv ` +h ) ` x ) ( +h |` ( H X. H ) ) x ) = ( GId ` +h ) ) |
81 |
5 28 47 51 57 74 80
|
isgrpoi |
|- ( +h |` ( H X. H ) ) e. GrpOp |
82 |
|
resss |
|- ( +h |` ( H X. H ) ) C_ +h |
83 |
4 81 82
|
3pm3.2i |
|- ( +h e. GrpOp /\ ( +h |` ( H X. H ) ) e. GrpOp /\ ( +h |` ( H X. H ) ) C_ +h ) |