Metamath Proof Explorer


Theorem hhssba

Description: The base set of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsssh2.1
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
hhssba.2
|- H e. SH
Assertion hhssba
|- H = ( BaseSet ` W )

Proof

Step Hyp Ref Expression
1 hhsssh2.1
 |-  W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
2 hhssba.2
 |-  H e. SH
3 eqid
 |-  <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >.
4 3 1 hhsst
 |-  ( H e. SH -> W e. ( SubSp ` <. <. +h , .h >. , normh >. ) )
5 2 4 ax-mp
 |-  W e. ( SubSp ` <. <. +h , .h >. , normh >. )
6 2 shssii
 |-  H C_ ~H
7 3 1 5 6 hhshsslem1
 |-  H = ( BaseSet ` W )