Description: The base set of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsssh2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. | |
| hhssba.2 | |- H e. SH | ||
| Assertion | hhssba | |- H = ( BaseSet ` W ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hhsssh2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. | |
| 2 | hhssba.2 | |- H e. SH | |
| 3 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. | |
| 4 | 3 1 | hhsst | |- ( H e. SH -> W e. ( SubSp ` <. <. +h , .h >. , normh >. ) ) | 
| 5 | 2 4 | ax-mp | |- W e. ( SubSp ` <. <. +h , .h >. , normh >. ) | 
| 6 | 2 | shssii | |- H C_ ~H | 
| 7 | 3 1 5 6 | hhshsslem1 | |- H = ( BaseSet ` W ) |