Metamath Proof Explorer


Theorem hhssbnOLD

Description: Obsolete version of cssbn : Banach space property of a closed subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses hhssbnOLD.1
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
hhssbnOLD.2
|- H e. CH
Assertion hhssbnOLD
|- W e. CBan

Proof

Step Hyp Ref Expression
1 hhssbnOLD.1
 |-  W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
2 hhssbnOLD.2
 |-  H e. CH
3 2 chshii
 |-  H e. SH
4 1 3 hhssnv
 |-  W e. NrmCVec
5 eqid
 |-  ( IndMet ` W ) = ( IndMet ` W )
6 1 5 2 hhsscms
 |-  ( IndMet ` W ) e. ( CMet ` H )
7 1 3 hhssba
 |-  H = ( BaseSet ` W )
8 7 5 iscbn
 |-  ( W e. CBan <-> ( W e. NrmCVec /\ ( IndMet ` W ) e. ( CMet ` H ) ) )
9 4 6 8 mpbir2an
 |-  W e. CBan