Step |
Hyp |
Ref |
Expression |
1 |
|
hhssims2.1 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
2 |
|
hhssims2.3 |
|- D = ( IndMet ` W ) |
3 |
|
hhsscms.3 |
|- H e. CH |
4 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
5 |
3
|
chshii |
|- H e. SH |
6 |
1 2 5
|
hhssmet |
|- D e. ( Met ` H ) |
7 |
|
simpl |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. ( Cau ` D ) ) |
8 |
1 2 5
|
hhssims2 |
|- D = ( ( normh o. -h ) |` ( H X. H ) ) |
9 |
8
|
fveq2i |
|- ( Cau ` D ) = ( Cau ` ( ( normh o. -h ) |` ( H X. H ) ) ) |
10 |
7 9
|
eleqtrdi |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. ( Cau ` ( ( normh o. -h ) |` ( H X. H ) ) ) ) |
11 |
|
eqid |
|- ( normh o. -h ) = ( normh o. -h ) |
12 |
11
|
hilxmet |
|- ( normh o. -h ) e. ( *Met ` ~H ) |
13 |
|
simpr |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f : NN --> H ) |
14 |
|
causs |
|- ( ( ( normh o. -h ) e. ( *Met ` ~H ) /\ f : NN --> H ) -> ( f e. ( Cau ` ( normh o. -h ) ) <-> f e. ( Cau ` ( ( normh o. -h ) |` ( H X. H ) ) ) ) ) |
15 |
12 13 14
|
sylancr |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> ( f e. ( Cau ` ( normh o. -h ) ) <-> f e. ( Cau ` ( ( normh o. -h ) |` ( H X. H ) ) ) ) ) |
16 |
10 15
|
mpbird |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. ( Cau ` ( normh o. -h ) ) ) |
17 |
3
|
chssii |
|- H C_ ~H |
18 |
|
fss |
|- ( ( f : NN --> H /\ H C_ ~H ) -> f : NN --> ~H ) |
19 |
13 17 18
|
sylancl |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f : NN --> ~H ) |
20 |
|
ax-hilex |
|- ~H e. _V |
21 |
|
nnex |
|- NN e. _V |
22 |
20 21
|
elmap |
|- ( f e. ( ~H ^m NN ) <-> f : NN --> ~H ) |
23 |
19 22
|
sylibr |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. ( ~H ^m NN ) ) |
24 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
25 |
24 11
|
hhims |
|- ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
26 |
24 25
|
hhcau |
|- Cauchy = ( ( Cau ` ( normh o. -h ) ) i^i ( ~H ^m NN ) ) |
27 |
26
|
elin2 |
|- ( f e. Cauchy <-> ( f e. ( Cau ` ( normh o. -h ) ) /\ f e. ( ~H ^m NN ) ) ) |
28 |
16 23 27
|
sylanbrc |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. Cauchy ) |
29 |
|
ax-hcompl |
|- ( f e. Cauchy -> E. x e. ~H f ~~>v x ) |
30 |
|
vex |
|- f e. _V |
31 |
|
vex |
|- x e. _V |
32 |
30 31
|
breldm |
|- ( f ~~>v x -> f e. dom ~~>v ) |
33 |
32
|
rexlimivw |
|- ( E. x e. ~H f ~~>v x -> f e. dom ~~>v ) |
34 |
28 29 33
|
3syl |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. dom ~~>v ) |
35 |
|
hlimf |
|- ~~>v : dom ~~>v --> ~H |
36 |
|
ffun |
|- ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) |
37 |
|
funfvbrb |
|- ( Fun ~~>v -> ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) ) |
38 |
35 36 37
|
mp2b |
|- ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) |
39 |
34 38
|
sylib |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f ~~>v ( ~~>v ` f ) ) |
40 |
|
eqid |
|- ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) |
41 |
24 25 40
|
hhlm |
|- ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) |
42 |
|
resss |
|- ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
43 |
41 42
|
eqsstri |
|- ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
44 |
43
|
ssbri |
|- ( f ~~>v ( ~~>v ` f ) -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` f ) ) |
45 |
39 44
|
syl |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` f ) ) |
46 |
8 40 4
|
metrest |
|- ( ( ( normh o. -h ) e. ( *Met ` ~H ) /\ H C_ ~H ) -> ( ( MetOpen ` ( normh o. -h ) ) |`t H ) = ( MetOpen ` D ) ) |
47 |
12 17 46
|
mp2an |
|- ( ( MetOpen ` ( normh o. -h ) ) |`t H ) = ( MetOpen ` D ) |
48 |
47
|
eqcomi |
|- ( MetOpen ` D ) = ( ( MetOpen ` ( normh o. -h ) ) |`t H ) |
49 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
50 |
3
|
a1i |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> H e. CH ) |
51 |
40
|
mopntop |
|- ( ( normh o. -h ) e. ( *Met ` ~H ) -> ( MetOpen ` ( normh o. -h ) ) e. Top ) |
52 |
12 51
|
mp1i |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> ( MetOpen ` ( normh o. -h ) ) e. Top ) |
53 |
|
fvex |
|- ( ~~>v ` f ) e. _V |
54 |
53
|
chlimi |
|- ( ( H e. CH /\ f : NN --> H /\ f ~~>v ( ~~>v ` f ) ) -> ( ~~>v ` f ) e. H ) |
55 |
50 13 39 54
|
syl3anc |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> ( ~~>v ` f ) e. H ) |
56 |
|
1zzd |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> 1 e. ZZ ) |
57 |
48 49 50 52 55 56 13
|
lmss |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> ( f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` f ) <-> f ( ~~>t ` ( MetOpen ` D ) ) ( ~~>v ` f ) ) ) |
58 |
45 57
|
mpbid |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f ( ~~>t ` ( MetOpen ` D ) ) ( ~~>v ` f ) ) |
59 |
30 53
|
breldm |
|- ( f ( ~~>t ` ( MetOpen ` D ) ) ( ~~>v ` f ) -> f e. dom ( ~~>t ` ( MetOpen ` D ) ) ) |
60 |
58 59
|
syl |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. dom ( ~~>t ` ( MetOpen ` D ) ) ) |
61 |
4 6 60
|
iscmet3i |
|- D e. ( CMet ` H ) |