Step |
Hyp |
Ref |
Expression |
1 |
|
hhsssh2.1 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
2 |
|
hhssims.2 |
|- H e. SH |
3 |
|
hhssims.3 |
|- D = ( ( normh o. -h ) |` ( H X. H ) ) |
4 |
1 2
|
hhssnv |
|- W e. NrmCVec |
5 |
1 2
|
hhssvs |
|- ( -h |` ( H X. H ) ) = ( -v ` W ) |
6 |
1
|
hhssnm |
|- ( normh |` H ) = ( normCV ` W ) |
7 |
|
eqid |
|- ( IndMet ` W ) = ( IndMet ` W ) |
8 |
5 6 7
|
imsval |
|- ( W e. NrmCVec -> ( IndMet ` W ) = ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) ) |
9 |
4 8
|
ax-mp |
|- ( IndMet ` W ) = ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) |
10 |
|
resco |
|- ( ( normh o. -h ) |` ( H X. H ) ) = ( normh o. ( -h |` ( H X. H ) ) ) |
11 |
1 2
|
hhssvsf |
|- ( -h |` ( H X. H ) ) : ( H X. H ) --> H |
12 |
|
frn |
|- ( ( -h |` ( H X. H ) ) : ( H X. H ) --> H -> ran ( -h |` ( H X. H ) ) C_ H ) |
13 |
11 12
|
ax-mp |
|- ran ( -h |` ( H X. H ) ) C_ H |
14 |
|
cores |
|- ( ran ( -h |` ( H X. H ) ) C_ H -> ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) = ( normh o. ( -h |` ( H X. H ) ) ) ) |
15 |
13 14
|
ax-mp |
|- ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) = ( normh o. ( -h |` ( H X. H ) ) ) |
16 |
10 15
|
eqtr4i |
|- ( ( normh o. -h ) |` ( H X. H ) ) = ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) |
17 |
9 16
|
eqtr4i |
|- ( IndMet ` W ) = ( ( normh o. -h ) |` ( H X. H ) ) |
18 |
3 17
|
eqtr4i |
|- D = ( IndMet ` W ) |