Metamath Proof Explorer


Theorem hhssims2

Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhssims2.1
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
hhssims2.3
|- D = ( IndMet ` W )
hhssims2.2
|- H e. SH
Assertion hhssims2
|- D = ( ( normh o. -h ) |` ( H X. H ) )

Proof

Step Hyp Ref Expression
1 hhssims2.1
 |-  W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
2 hhssims2.3
 |-  D = ( IndMet ` W )
3 hhssims2.2
 |-  H e. SH
4 eqid
 |-  ( ( normh o. -h ) |` ( H X. H ) ) = ( ( normh o. -h ) |` ( H X. H ) )
5 1 3 4 hhssims
 |-  ( ( normh o. -h ) |` ( H X. H ) ) = ( IndMet ` W )
6 2 5 eqtr4i
 |-  D = ( ( normh o. -h ) |` ( H X. H ) )