Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hhssims2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
hhssims2.3 | |- D = ( IndMet ` W ) |
||
hhssims2.2 | |- H e. SH |
||
Assertion | hhssims2 | |- D = ( ( normh o. -h ) |` ( H X. H ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssims2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
2 | hhssims2.3 | |- D = ( IndMet ` W ) |
|
3 | hhssims2.2 | |- H e. SH |
|
4 | eqid | |- ( ( normh o. -h ) |` ( H X. H ) ) = ( ( normh o. -h ) |` ( H X. H ) ) |
|
5 | 1 3 4 | hhssims | |- ( ( normh o. -h ) |` ( H X. H ) ) = ( IndMet ` W ) |
6 | 2 5 | eqtr4i | |- D = ( ( normh o. -h ) |` ( H X. H ) ) |