Metamath Proof Explorer


Theorem hhssmet

Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhssims2.1
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
hhssims2.3
|- D = ( IndMet ` W )
hhssims2.2
|- H e. SH
Assertion hhssmet
|- D e. ( Met ` H )

Proof

Step Hyp Ref Expression
1 hhssims2.1
 |-  W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
2 hhssims2.3
 |-  D = ( IndMet ` W )
3 hhssims2.2
 |-  H e. SH
4 1 3 hhssnv
 |-  W e. NrmCVec
5 1 3 hhssba
 |-  H = ( BaseSet ` W )
6 5 2 imsmet
 |-  ( W e. NrmCVec -> D e. ( Met ` H ) )
7 4 6 ax-mp
 |-  D e. ( Met ` H )