| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhssims2.1 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
| 2 |
|
hhssims2.3 |
|- D = ( IndMet ` W ) |
| 3 |
|
hhssims2.2 |
|- H e. SH |
| 4 |
1 3
|
hhssnv |
|- W e. NrmCVec |
| 5 |
1 3
|
hhssba |
|- H = ( BaseSet ` W ) |
| 6 |
1 3
|
hhssvs |
|- ( -h |` ( H X. H ) ) = ( -v ` W ) |
| 7 |
1
|
hhssnm |
|- ( normh |` H ) = ( normCV ` W ) |
| 8 |
5 6 7 2
|
imsdval |
|- ( ( W e. NrmCVec /\ A e. H /\ B e. H ) -> ( A D B ) = ( ( normh |` H ) ` ( A ( -h |` ( H X. H ) ) B ) ) ) |
| 9 |
4 8
|
mp3an1 |
|- ( ( A e. H /\ B e. H ) -> ( A D B ) = ( ( normh |` H ) ` ( A ( -h |` ( H X. H ) ) B ) ) ) |
| 10 |
|
ovres |
|- ( ( A e. H /\ B e. H ) -> ( A ( -h |` ( H X. H ) ) B ) = ( A -h B ) ) |
| 11 |
10
|
fveq2d |
|- ( ( A e. H /\ B e. H ) -> ( ( normh |` H ) ` ( A ( -h |` ( H X. H ) ) B ) ) = ( ( normh |` H ) ` ( A -h B ) ) ) |
| 12 |
|
shsubcl |
|- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H ) |
| 13 |
3 12
|
mp3an1 |
|- ( ( A e. H /\ B e. H ) -> ( A -h B ) e. H ) |
| 14 |
|
fvres |
|- ( ( A -h B ) e. H -> ( ( normh |` H ) ` ( A -h B ) ) = ( normh ` ( A -h B ) ) ) |
| 15 |
13 14
|
syl |
|- ( ( A e. H /\ B e. H ) -> ( ( normh |` H ) ` ( A -h B ) ) = ( normh ` ( A -h B ) ) ) |
| 16 |
9 11 15
|
3eqtrd |
|- ( ( A e. H /\ B e. H ) -> ( A D B ) = ( normh ` ( A -h B ) ) ) |