Step |
Hyp |
Ref |
Expression |
1 |
|
hhss.1 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
2 |
|
eqid |
|- ( normCV ` W ) = ( normCV ` W ) |
3 |
2
|
nmcvfval |
|- ( normCV ` W ) = ( 2nd ` W ) |
4 |
1
|
fveq2i |
|- ( 2nd ` W ) = ( 2nd ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
5 |
|
opex |
|- <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. e. _V |
6 |
|
normf |
|- normh : ~H --> RR |
7 |
|
ax-hilex |
|- ~H e. _V |
8 |
|
fex |
|- ( ( normh : ~H --> RR /\ ~H e. _V ) -> normh e. _V ) |
9 |
6 7 8
|
mp2an |
|- normh e. _V |
10 |
9
|
resex |
|- ( normh |` H ) e. _V |
11 |
5 10
|
op2nd |
|- ( 2nd ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( normh |` H ) |
12 |
3 4 11
|
3eqtrri |
|- ( normh |` H ) = ( normCV ` W ) |