| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhsssh2.1 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
| 2 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
| 3 |
2 1
|
hhsssh |
|- ( H e. SH <-> ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) /\ H C_ ~H ) ) |
| 4 |
|
resss |
|- ( +h |` ( H X. H ) ) C_ +h |
| 5 |
|
resss |
|- ( .h |` ( CC X. H ) ) C_ .h |
| 6 |
|
resss |
|- ( normh |` H ) C_ normh |
| 7 |
4 5 6
|
3pm3.2i |
|- ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) |
| 8 |
2
|
hhnv |
|- <. <. +h , .h >. , normh >. e. NrmCVec |
| 9 |
2
|
hhva |
|- +h = ( +v ` <. <. +h , .h >. , normh >. ) |
| 10 |
1
|
hhssva |
|- ( +h |` ( H X. H ) ) = ( +v ` W ) |
| 11 |
2
|
hhsm |
|- .h = ( .sOLD ` <. <. +h , .h >. , normh >. ) |
| 12 |
1
|
hhsssm |
|- ( .h |` ( CC X. H ) ) = ( .sOLD ` W ) |
| 13 |
2
|
hhnm |
|- normh = ( normCV ` <. <. +h , .h >. , normh >. ) |
| 14 |
1
|
hhssnm |
|- ( normh |` H ) = ( normCV ` W ) |
| 15 |
|
eqid |
|- ( SubSp ` <. <. +h , .h >. , normh >. ) = ( SubSp ` <. <. +h , .h >. , normh >. ) |
| 16 |
9 10 11 12 13 14 15
|
isssp |
|- ( <. <. +h , .h >. , normh >. e. NrmCVec -> ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) ) |
| 17 |
8 16
|
ax-mp |
|- ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) |
| 18 |
7 17
|
mpbiran2 |
|- ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) <-> W e. NrmCVec ) |
| 19 |
18
|
anbi1i |
|- ( ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) /\ H C_ ~H ) <-> ( W e. NrmCVec /\ H C_ ~H ) ) |
| 20 |
3 19
|
bitri |
|- ( H e. SH <-> ( W e. NrmCVec /\ H C_ ~H ) ) |