Step |
Hyp |
Ref |
Expression |
1 |
|
hhsst.1 |
|- U = <. <. +h , .h >. , normh >. |
2 |
|
hhsst.2 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
3 |
2
|
hhssnvt |
|- ( H e. SH -> W e. NrmCVec ) |
4 |
|
resss |
|- ( +h |` ( H X. H ) ) C_ +h |
5 |
|
resss |
|- ( .h |` ( CC X. H ) ) C_ .h |
6 |
|
resss |
|- ( normh |` H ) C_ normh |
7 |
4 5 6
|
3pm3.2i |
|- ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) |
8 |
3 7
|
jctir |
|- ( H e. SH -> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) |
9 |
1
|
hhnv |
|- U e. NrmCVec |
10 |
1
|
hhva |
|- +h = ( +v ` U ) |
11 |
2
|
hhssva |
|- ( +h |` ( H X. H ) ) = ( +v ` W ) |
12 |
1
|
hhsm |
|- .h = ( .sOLD ` U ) |
13 |
2
|
hhsssm |
|- ( .h |` ( CC X. H ) ) = ( .sOLD ` W ) |
14 |
1
|
hhnm |
|- normh = ( normCV ` U ) |
15 |
2
|
hhssnm |
|- ( normh |` H ) = ( normCV ` W ) |
16 |
|
eqid |
|- ( SubSp ` U ) = ( SubSp ` U ) |
17 |
10 11 12 13 14 15 16
|
isssp |
|- ( U e. NrmCVec -> ( W e. ( SubSp ` U ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) ) |
18 |
9 17
|
ax-mp |
|- ( W e. ( SubSp ` U ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) |
19 |
8 18
|
sylibr |
|- ( H e. SH -> W e. ( SubSp ` U ) ) |