| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhss.1 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
| 2 |
|
eqid |
|- ( +v ` W ) = ( +v ` W ) |
| 3 |
2
|
vafval |
|- ( +v ` W ) = ( 1st ` ( 1st ` W ) ) |
| 4 |
1
|
fveq2i |
|- ( 1st ` W ) = ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
| 5 |
|
opex |
|- <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. e. _V |
| 6 |
|
normf |
|- normh : ~H --> RR |
| 7 |
|
ax-hilex |
|- ~H e. _V |
| 8 |
|
fex |
|- ( ( normh : ~H --> RR /\ ~H e. _V ) -> normh e. _V ) |
| 9 |
6 7 8
|
mp2an |
|- normh e. _V |
| 10 |
9
|
resex |
|- ( normh |` H ) e. _V |
| 11 |
5 10
|
op1st |
|- ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. |
| 12 |
4 11
|
eqtri |
|- ( 1st ` W ) = <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. |
| 13 |
12
|
fveq2i |
|- ( 1st ` ( 1st ` W ) ) = ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) |
| 14 |
|
hilablo |
|- +h e. AbelOp |
| 15 |
|
resexg |
|- ( +h e. AbelOp -> ( +h |` ( H X. H ) ) e. _V ) |
| 16 |
14 15
|
ax-mp |
|- ( +h |` ( H X. H ) ) e. _V |
| 17 |
|
hvmulex |
|- .h e. _V |
| 18 |
17
|
resex |
|- ( .h |` ( CC X. H ) ) e. _V |
| 19 |
16 18
|
op1st |
|- ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) = ( +h |` ( H X. H ) ) |
| 20 |
3 13 19
|
3eqtrri |
|- ( +h |` ( H X. H ) ) = ( +v ` W ) |