Step |
Hyp |
Ref |
Expression |
1 |
|
hhsssh2.1 |
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
2 |
|
hhssba.2 |
|- H e. SH |
3 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
4 |
3
|
hhnv |
|- <. <. +h , .h >. , normh >. e. NrmCVec |
5 |
3 1
|
hhsst |
|- ( H e. SH -> W e. ( SubSp ` <. <. +h , .h >. , normh >. ) ) |
6 |
2 5
|
ax-mp |
|- W e. ( SubSp ` <. <. +h , .h >. , normh >. ) |
7 |
1 2
|
hhssba |
|- H = ( BaseSet ` W ) |
8 |
3
|
hhvs |
|- -h = ( -v ` <. <. +h , .h >. , normh >. ) |
9 |
|
eqid |
|- ( -v ` W ) = ( -v ` W ) |
10 |
|
eqid |
|- ( SubSp ` <. <. +h , .h >. , normh >. ) = ( SubSp ` <. <. +h , .h >. , normh >. ) |
11 |
7 8 9 10
|
sspm |
|- ( ( <. <. +h , .h >. , normh >. e. NrmCVec /\ W e. ( SubSp ` <. <. +h , .h >. , normh >. ) ) -> ( -v ` W ) = ( -h |` ( H X. H ) ) ) |
12 |
4 6 11
|
mp2an |
|- ( -v ` W ) = ( -h |` ( H X. H ) ) |
13 |
12
|
eqcomi |
|- ( -h |` ( H X. H ) ) = ( -v ` W ) |