Metamath Proof Explorer


Theorem hhssvsf

Description: Mapping of the vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsssh2.1
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
hhssba.2
|- H e. SH
Assertion hhssvsf
|- ( -h |` ( H X. H ) ) : ( H X. H ) --> H

Proof

Step Hyp Ref Expression
1 hhsssh2.1
 |-  W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
2 hhssba.2
 |-  H e. SH
3 1 2 hhssnv
 |-  W e. NrmCVec
4 1 2 hhssba
 |-  H = ( BaseSet ` W )
5 1 2 hhssvs
 |-  ( -h |` ( H X. H ) ) = ( -v ` W )
6 4 5 nvmf
 |-  ( W e. NrmCVec -> ( -h |` ( H X. H ) ) : ( H X. H ) --> H )
7 3 6 ax-mp
 |-  ( -h |` ( H X. H ) ) : ( H X. H ) --> H