Metamath Proof Explorer


Theorem hhxmet

Description: The induced metric of Hilbert space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1
|- U = <. <. +h , .h >. , normh >.
hhims2.2
|- D = ( IndMet ` U )
Assertion hhxmet
|- D e. ( *Met ` ~H )

Proof

Step Hyp Ref Expression
1 hhnv.1
 |-  U = <. <. +h , .h >. , normh >.
2 hhims2.2
 |-  D = ( IndMet ` U )
3 1 2 hhmet
 |-  D e. ( Met ` ~H )
4 metxmet
 |-  ( D e. ( Met ` ~H ) -> D e. ( *Met ` ~H ) )
5 3 4 ax-mp
 |-  D e. ( *Met ` ~H )