Description: The induced metric of Hilbert space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
hhims2.2 | |- D = ( IndMet ` U ) |
||
Assertion | hhxmet | |- D e. ( *Met ` ~H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
2 | hhims2.2 | |- D = ( IndMet ` U ) |
|
3 | 1 2 | hhmet | |- D e. ( Met ` ~H ) |
4 | metxmet | |- ( D e. ( Met ` ~H ) -> D e. ( *Met ` ~H ) ) |
|
5 | 3 4 | ax-mp | |- D e. ( *Met ` ~H ) |