Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hv0cl |
|- 0h e. ~H |
2 |
|
ax-hvmul0 |
|- ( 0h e. ~H -> ( 0 .h 0h ) = 0h ) |
3 |
1 2
|
ax-mp |
|- ( 0 .h 0h ) = 0h |
4 |
3
|
oveq1i |
|- ( ( 0 .h 0h ) .ih A ) = ( 0h .ih A ) |
5 |
|
0cn |
|- 0 e. CC |
6 |
|
ax-his3 |
|- ( ( 0 e. CC /\ 0h e. ~H /\ A e. ~H ) -> ( ( 0 .h 0h ) .ih A ) = ( 0 x. ( 0h .ih A ) ) ) |
7 |
5 1 6
|
mp3an12 |
|- ( A e. ~H -> ( ( 0 .h 0h ) .ih A ) = ( 0 x. ( 0h .ih A ) ) ) |
8 |
4 7
|
eqtr3id |
|- ( A e. ~H -> ( 0h .ih A ) = ( 0 x. ( 0h .ih A ) ) ) |
9 |
|
hicl |
|- ( ( 0h e. ~H /\ A e. ~H ) -> ( 0h .ih A ) e. CC ) |
10 |
1 9
|
mpan |
|- ( A e. ~H -> ( 0h .ih A ) e. CC ) |
11 |
10
|
mul02d |
|- ( A e. ~H -> ( 0 x. ( 0h .ih A ) ) = 0 ) |
12 |
8 11
|
eqtrd |
|- ( A e. ~H -> ( 0h .ih A ) = 0 ) |