Metamath Proof Explorer


Theorem hi02

Description: Inner product with the 0 vector. (Contributed by NM, 13-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hi02
|- ( A e. ~H -> ( A .ih 0h ) = 0 )

Proof

Step Hyp Ref Expression
1 ax-hv0cl
 |-  0h e. ~H
2 ax-his1
 |-  ( ( A e. ~H /\ 0h e. ~H ) -> ( A .ih 0h ) = ( * ` ( 0h .ih A ) ) )
3 1 2 mpan2
 |-  ( A e. ~H -> ( A .ih 0h ) = ( * ` ( 0h .ih A ) ) )
4 hi01
 |-  ( A e. ~H -> ( 0h .ih A ) = 0 )
5 4 fveq2d
 |-  ( A e. ~H -> ( * ` ( 0h .ih A ) ) = ( * ` 0 ) )
6 cj0
 |-  ( * ` 0 ) = 0
7 5 6 eqtrdi
 |-  ( A e. ~H -> ( * ` ( 0h .ih A ) ) = 0 )
8 3 7 eqtrd
 |-  ( A e. ~H -> ( A .ih 0h ) = 0 )