Description: Inner product with the 0 vector. (Contributed by NM, 13-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hi02 | |- ( A e. ~H -> ( A .ih 0h ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl | |- 0h e. ~H |
|
2 | ax-his1 | |- ( ( A e. ~H /\ 0h e. ~H ) -> ( A .ih 0h ) = ( * ` ( 0h .ih A ) ) ) |
|
3 | 1 2 | mpan2 | |- ( A e. ~H -> ( A .ih 0h ) = ( * ` ( 0h .ih A ) ) ) |
4 | hi01 | |- ( A e. ~H -> ( 0h .ih A ) = 0 ) |
|
5 | 4 | fveq2d | |- ( A e. ~H -> ( * ` ( 0h .ih A ) ) = ( * ` 0 ) ) |
6 | cj0 | |- ( * ` 0 ) = 0 |
|
7 | 5 6 | eqtrdi | |- ( A e. ~H -> ( * ` ( 0h .ih A ) ) = 0 ) |
8 | 3 7 | eqtrd | |- ( A e. ~H -> ( A .ih 0h ) = 0 ) |