Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = A -> ( A .ih x ) = ( A .ih A ) ) |
2 |
1
|
eqeq1d |
|- ( x = A -> ( ( A .ih x ) = 0 <-> ( A .ih A ) = 0 ) ) |
3 |
2
|
rspcv |
|- ( A e. ~H -> ( A. x e. ~H ( A .ih x ) = 0 -> ( A .ih A ) = 0 ) ) |
4 |
|
his6 |
|- ( A e. ~H -> ( ( A .ih A ) = 0 <-> A = 0h ) ) |
5 |
3 4
|
sylibd |
|- ( A e. ~H -> ( A. x e. ~H ( A .ih x ) = 0 -> A = 0h ) ) |
6 |
|
oveq1 |
|- ( A = 0h -> ( A .ih x ) = ( 0h .ih x ) ) |
7 |
|
hi01 |
|- ( x e. ~H -> ( 0h .ih x ) = 0 ) |
8 |
6 7
|
sylan9eq |
|- ( ( A = 0h /\ x e. ~H ) -> ( A .ih x ) = 0 ) |
9 |
8
|
ex |
|- ( A = 0h -> ( x e. ~H -> ( A .ih x ) = 0 ) ) |
10 |
9
|
a1i |
|- ( A e. ~H -> ( A = 0h -> ( x e. ~H -> ( A .ih x ) = 0 ) ) ) |
11 |
10
|
ralrimdv |
|- ( A e. ~H -> ( A = 0h -> A. x e. ~H ( A .ih x ) = 0 ) ) |
12 |
5 11
|
impbid |
|- ( A e. ~H -> ( A. x e. ~H ( A .ih x ) = 0 <-> A = 0h ) ) |