| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = A -> ( A .ih x ) = ( A .ih A ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqeq1d | 
							 |-  ( x = A -> ( ( A .ih x ) = 0 <-> ( A .ih A ) = 0 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							rspcv | 
							 |-  ( A e. ~H -> ( A. x e. ~H ( A .ih x ) = 0 -> ( A .ih A ) = 0 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							his6 | 
							 |-  ( A e. ~H -> ( ( A .ih A ) = 0 <-> A = 0h ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylibd | 
							 |-  ( A e. ~H -> ( A. x e. ~H ( A .ih x ) = 0 -> A = 0h ) )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							 |-  ( A = 0h -> ( A .ih x ) = ( 0h .ih x ) )  | 
						
						
							| 7 | 
							
								
							 | 
							hi01 | 
							 |-  ( x e. ~H -> ( 0h .ih x ) = 0 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan9eq | 
							 |-  ( ( A = 0h /\ x e. ~H ) -> ( A .ih x ) = 0 )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							 |-  ( A = 0h -> ( x e. ~H -> ( A .ih x ) = 0 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							 |-  ( A e. ~H -> ( A = 0h -> ( x e. ~H -> ( A .ih x ) = 0 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ralrimdv | 
							 |-  ( A e. ~H -> ( A = 0h -> A. x e. ~H ( A .ih x ) = 0 ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							impbid | 
							 |-  ( A e. ~H -> ( A. x e. ~H ( A .ih x ) = 0 <-> A = 0h ) )  |