Metamath Proof Explorer


Theorem hial02

Description: A vector whose inner product is always zero is zero. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion hial02
|- ( A e. ~H -> ( A. x e. ~H ( x .ih A ) = 0 <-> A = 0h ) )

Proof

Step Hyp Ref Expression
1 oveq1
 |-  ( x = A -> ( x .ih A ) = ( A .ih A ) )
2 1 eqeq1d
 |-  ( x = A -> ( ( x .ih A ) = 0 <-> ( A .ih A ) = 0 ) )
3 2 rspcv
 |-  ( A e. ~H -> ( A. x e. ~H ( x .ih A ) = 0 -> ( A .ih A ) = 0 ) )
4 his6
 |-  ( A e. ~H -> ( ( A .ih A ) = 0 <-> A = 0h ) )
5 3 4 sylibd
 |-  ( A e. ~H -> ( A. x e. ~H ( x .ih A ) = 0 -> A = 0h ) )
6 oveq2
 |-  ( A = 0h -> ( x .ih A ) = ( x .ih 0h ) )
7 hi02
 |-  ( x e. ~H -> ( x .ih 0h ) = 0 )
8 6 7 sylan9eq
 |-  ( ( A = 0h /\ x e. ~H ) -> ( x .ih A ) = 0 )
9 8 ex
 |-  ( A = 0h -> ( x e. ~H -> ( x .ih A ) = 0 ) )
10 9 a1i
 |-  ( A e. ~H -> ( A = 0h -> ( x e. ~H -> ( x .ih A ) = 0 ) ) )
11 10 ralrimdv
 |-  ( A e. ~H -> ( A = 0h -> A. x e. ~H ( x .ih A ) = 0 ) )
12 5 11 impbid
 |-  ( A e. ~H -> ( A. x e. ~H ( x .ih A ) = 0 <-> A = 0h ) )