Metamath Proof Explorer


Theorem hial2eq

Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion hial2eq
|- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) <-> A = B ) )

Proof

Step Hyp Ref Expression
1 hvsubcl
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H )
2 oveq2
 |-  ( x = ( A -h B ) -> ( A .ih x ) = ( A .ih ( A -h B ) ) )
3 oveq2
 |-  ( x = ( A -h B ) -> ( B .ih x ) = ( B .ih ( A -h B ) ) )
4 2 3 eqeq12d
 |-  ( x = ( A -h B ) -> ( ( A .ih x ) = ( B .ih x ) <-> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) )
5 4 rspcv
 |-  ( ( A -h B ) e. ~H -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) )
6 1 5 syl
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) )
7 hi2eq
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) <-> A = B ) )
8 6 7 sylibd
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> A = B ) )
9 oveq1
 |-  ( A = B -> ( A .ih x ) = ( B .ih x ) )
10 9 ralrimivw
 |-  ( A = B -> A. x e. ~H ( A .ih x ) = ( B .ih x ) )
11 8 10 impbid1
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) <-> A = B ) )