| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvsubcl |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H ) | 
						
							| 2 |  | oveq2 |  |-  ( x = ( A -h B ) -> ( A .ih x ) = ( A .ih ( A -h B ) ) ) | 
						
							| 3 |  | oveq2 |  |-  ( x = ( A -h B ) -> ( B .ih x ) = ( B .ih ( A -h B ) ) ) | 
						
							| 4 | 2 3 | eqeq12d |  |-  ( x = ( A -h B ) -> ( ( A .ih x ) = ( B .ih x ) <-> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) | 
						
							| 5 | 4 | rspcv |  |-  ( ( A -h B ) e. ~H -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) | 
						
							| 6 | 1 5 | syl |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) | 
						
							| 7 |  | hi2eq |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) <-> A = B ) ) | 
						
							| 8 | 6 7 | sylibd |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> A = B ) ) | 
						
							| 9 |  | oveq1 |  |-  ( A = B -> ( A .ih x ) = ( B .ih x ) ) | 
						
							| 10 | 9 | ralrimivw |  |-  ( A = B -> A. x e. ~H ( A .ih x ) = ( B .ih x ) ) | 
						
							| 11 | 8 10 | impbid1 |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) <-> A = B ) ) |