Step |
Hyp |
Ref |
Expression |
1 |
|
hvsubcl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H ) |
2 |
|
oveq2 |
|- ( x = ( A -h B ) -> ( A .ih x ) = ( A .ih ( A -h B ) ) ) |
3 |
|
oveq2 |
|- ( x = ( A -h B ) -> ( B .ih x ) = ( B .ih ( A -h B ) ) ) |
4 |
2 3
|
eqeq12d |
|- ( x = ( A -h B ) -> ( ( A .ih x ) = ( B .ih x ) <-> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) |
5 |
4
|
rspcv |
|- ( ( A -h B ) e. ~H -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) |
6 |
1 5
|
syl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) |
7 |
|
hi2eq |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) <-> A = B ) ) |
8 |
6 7
|
sylibd |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> A = B ) ) |
9 |
|
oveq1 |
|- ( A = B -> ( A .ih x ) = ( B .ih x ) ) |
10 |
9
|
ralrimivw |
|- ( A = B -> A. x e. ~H ( A .ih x ) = ( B .ih x ) ) |
11 |
8 10
|
impbid1 |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) <-> A = B ) ) |