Step |
Hyp |
Ref |
Expression |
1 |
|
ax-his1 |
|- ( ( A e. ~H /\ x e. ~H ) -> ( A .ih x ) = ( * ` ( x .ih A ) ) ) |
2 |
|
ax-his1 |
|- ( ( B e. ~H /\ x e. ~H ) -> ( B .ih x ) = ( * ` ( x .ih B ) ) ) |
3 |
1 2
|
eqeqan12d |
|- ( ( ( A e. ~H /\ x e. ~H ) /\ ( B e. ~H /\ x e. ~H ) ) -> ( ( A .ih x ) = ( B .ih x ) <-> ( * ` ( x .ih A ) ) = ( * ` ( x .ih B ) ) ) ) |
4 |
|
hicl |
|- ( ( x e. ~H /\ A e. ~H ) -> ( x .ih A ) e. CC ) |
5 |
4
|
ancoms |
|- ( ( A e. ~H /\ x e. ~H ) -> ( x .ih A ) e. CC ) |
6 |
|
hicl |
|- ( ( x e. ~H /\ B e. ~H ) -> ( x .ih B ) e. CC ) |
7 |
6
|
ancoms |
|- ( ( B e. ~H /\ x e. ~H ) -> ( x .ih B ) e. CC ) |
8 |
|
cj11 |
|- ( ( ( x .ih A ) e. CC /\ ( x .ih B ) e. CC ) -> ( ( * ` ( x .ih A ) ) = ( * ` ( x .ih B ) ) <-> ( x .ih A ) = ( x .ih B ) ) ) |
9 |
5 7 8
|
syl2an |
|- ( ( ( A e. ~H /\ x e. ~H ) /\ ( B e. ~H /\ x e. ~H ) ) -> ( ( * ` ( x .ih A ) ) = ( * ` ( x .ih B ) ) <-> ( x .ih A ) = ( x .ih B ) ) ) |
10 |
3 9
|
bitr2d |
|- ( ( ( A e. ~H /\ x e. ~H ) /\ ( B e. ~H /\ x e. ~H ) ) -> ( ( x .ih A ) = ( x .ih B ) <-> ( A .ih x ) = ( B .ih x ) ) ) |
11 |
10
|
anandirs |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ x e. ~H ) -> ( ( x .ih A ) = ( x .ih B ) <-> ( A .ih x ) = ( B .ih x ) ) ) |
12 |
11
|
ralbidva |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( x .ih A ) = ( x .ih B ) <-> A. x e. ~H ( A .ih x ) = ( B .ih x ) ) ) |
13 |
|
hial2eq |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) <-> A = B ) ) |
14 |
12 13
|
bitrd |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( x .ih A ) = ( x .ih B ) <-> A = B ) ) |