| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-his1 |  |-  ( ( A e. ~H /\ x e. ~H ) -> ( A .ih x ) = ( * ` ( x .ih A ) ) ) | 
						
							| 2 |  | ax-his1 |  |-  ( ( B e. ~H /\ x e. ~H ) -> ( B .ih x ) = ( * ` ( x .ih B ) ) ) | 
						
							| 3 | 1 2 | eqeqan12d |  |-  ( ( ( A e. ~H /\ x e. ~H ) /\ ( B e. ~H /\ x e. ~H ) ) -> ( ( A .ih x ) = ( B .ih x ) <-> ( * ` ( x .ih A ) ) = ( * ` ( x .ih B ) ) ) ) | 
						
							| 4 |  | hicl |  |-  ( ( x e. ~H /\ A e. ~H ) -> ( x .ih A ) e. CC ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( A e. ~H /\ x e. ~H ) -> ( x .ih A ) e. CC ) | 
						
							| 6 |  | hicl |  |-  ( ( x e. ~H /\ B e. ~H ) -> ( x .ih B ) e. CC ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( B e. ~H /\ x e. ~H ) -> ( x .ih B ) e. CC ) | 
						
							| 8 |  | cj11 |  |-  ( ( ( x .ih A ) e. CC /\ ( x .ih B ) e. CC ) -> ( ( * ` ( x .ih A ) ) = ( * ` ( x .ih B ) ) <-> ( x .ih A ) = ( x .ih B ) ) ) | 
						
							| 9 | 5 7 8 | syl2an |  |-  ( ( ( A e. ~H /\ x e. ~H ) /\ ( B e. ~H /\ x e. ~H ) ) -> ( ( * ` ( x .ih A ) ) = ( * ` ( x .ih B ) ) <-> ( x .ih A ) = ( x .ih B ) ) ) | 
						
							| 10 | 3 9 | bitr2d |  |-  ( ( ( A e. ~H /\ x e. ~H ) /\ ( B e. ~H /\ x e. ~H ) ) -> ( ( x .ih A ) = ( x .ih B ) <-> ( A .ih x ) = ( B .ih x ) ) ) | 
						
							| 11 | 10 | anandirs |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ x e. ~H ) -> ( ( x .ih A ) = ( x .ih B ) <-> ( A .ih x ) = ( B .ih x ) ) ) | 
						
							| 12 | 11 | ralbidva |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( x .ih A ) = ( x .ih B ) <-> A. x e. ~H ( A .ih x ) = ( B .ih x ) ) ) | 
						
							| 13 |  | hial2eq |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) <-> A = B ) ) | 
						
							| 14 | 12 13 | bitrd |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( x .ih A ) = ( x .ih B ) <-> A = B ) ) |