Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hicl.1 | |- A e. ~H |
|
hicl.2 | |- B e. ~H |
||
Assertion | hicli | |- ( A .ih B ) e. CC |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hicl.1 | |- A e. ~H |
|
2 | hicl.2 | |- B e. ~H |
|
3 | hicl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) e. CC ) |
|
4 | 1 2 3 | mp2an | |- ( A .ih B ) e. CC |