Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.1 |
|- ( -. A = 0h \/ A = 0h ) |
2 |
|
df-ne |
|- ( A =/= 0h <-> -. A = 0h ) |
3 |
|
ax-his4 |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
4 |
2 3
|
sylan2br |
|- ( ( A e. ~H /\ -. A = 0h ) -> 0 < ( A .ih A ) ) |
5 |
4
|
ex |
|- ( A e. ~H -> ( -. A = 0h -> 0 < ( A .ih A ) ) ) |
6 |
|
oveq1 |
|- ( A = 0h -> ( A .ih A ) = ( 0h .ih A ) ) |
7 |
|
hi01 |
|- ( A e. ~H -> ( 0h .ih A ) = 0 ) |
8 |
6 7
|
sylan9eqr |
|- ( ( A e. ~H /\ A = 0h ) -> ( A .ih A ) = 0 ) |
9 |
8
|
eqcomd |
|- ( ( A e. ~H /\ A = 0h ) -> 0 = ( A .ih A ) ) |
10 |
9
|
ex |
|- ( A e. ~H -> ( A = 0h -> 0 = ( A .ih A ) ) ) |
11 |
5 10
|
orim12d |
|- ( A e. ~H -> ( ( -. A = 0h \/ A = 0h ) -> ( 0 < ( A .ih A ) \/ 0 = ( A .ih A ) ) ) ) |
12 |
1 11
|
mpi |
|- ( A e. ~H -> ( 0 < ( A .ih A ) \/ 0 = ( A .ih A ) ) ) |
13 |
|
0re |
|- 0 e. RR |
14 |
|
hiidrcl |
|- ( A e. ~H -> ( A .ih A ) e. RR ) |
15 |
|
leloe |
|- ( ( 0 e. RR /\ ( A .ih A ) e. RR ) -> ( 0 <_ ( A .ih A ) <-> ( 0 < ( A .ih A ) \/ 0 = ( A .ih A ) ) ) ) |
16 |
13 14 15
|
sylancr |
|- ( A e. ~H -> ( 0 <_ ( A .ih A ) <-> ( 0 < ( A .ih A ) \/ 0 = ( A .ih A ) ) ) ) |
17 |
12 16
|
mpbird |
|- ( A e. ~H -> 0 <_ ( A .ih A ) ) |