Description: Real closure of inner product with self. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hiidrcl | |- ( A e. ~H -> ( A .ih A ) e. RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( A .ih A ) = ( A .ih A ) | |
| 2 | hire | |- ( ( A e. ~H /\ A e. ~H ) -> ( ( A .ih A ) e. RR <-> ( A .ih A ) = ( A .ih A ) ) ) | |
| 3 | 1 2 | mpbiri | |- ( ( A e. ~H /\ A e. ~H ) -> ( A .ih A ) e. RR ) | 
| 4 | 3 | anidms | |- ( A e. ~H -> ( A .ih A ) e. RR ) |