| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hilex |
|- ~H e. _V |
| 2 |
|
ax-hfvadd |
|- +h : ( ~H X. ~H ) --> ~H |
| 3 |
|
ax-hvass |
|- ( ( x e. ~H /\ y e. ~H /\ z e. ~H ) -> ( ( x +h y ) +h z ) = ( x +h ( y +h z ) ) ) |
| 4 |
|
ax-hv0cl |
|- 0h e. ~H |
| 5 |
|
hvaddlid |
|- ( x e. ~H -> ( 0h +h x ) = x ) |
| 6 |
|
neg1cn |
|- -u 1 e. CC |
| 7 |
|
hvmulcl |
|- ( ( -u 1 e. CC /\ x e. ~H ) -> ( -u 1 .h x ) e. ~H ) |
| 8 |
6 7
|
mpan |
|- ( x e. ~H -> ( -u 1 .h x ) e. ~H ) |
| 9 |
|
ax-hvcom |
|- ( ( ( -u 1 .h x ) e. ~H /\ x e. ~H ) -> ( ( -u 1 .h x ) +h x ) = ( x +h ( -u 1 .h x ) ) ) |
| 10 |
8 9
|
mpancom |
|- ( x e. ~H -> ( ( -u 1 .h x ) +h x ) = ( x +h ( -u 1 .h x ) ) ) |
| 11 |
|
hvnegid |
|- ( x e. ~H -> ( x +h ( -u 1 .h x ) ) = 0h ) |
| 12 |
10 11
|
eqtrd |
|- ( x e. ~H -> ( ( -u 1 .h x ) +h x ) = 0h ) |
| 13 |
1 2 3 4 5 8 12
|
isgrpoi |
|- +h e. GrpOp |
| 14 |
2
|
fdmi |
|- dom +h = ( ~H X. ~H ) |
| 15 |
|
ax-hvcom |
|- ( ( x e. ~H /\ y e. ~H ) -> ( x +h y ) = ( y +h x ) ) |
| 16 |
13 14 15
|
isabloi |
|- +h e. AbelOp |