Description: The Hilbert space norm determines a complete metric space. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hilcms.1 | |- D = ( normh o. -h ) |
|
| Assertion | hilcms | |- D e. ( CMet ` ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilcms.1 | |- D = ( normh o. -h ) |
|
| 2 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 3 | 2 1 | hhims | |- D = ( IndMet ` <. <. +h , .h >. , normh >. ) |
| 4 | 2 3 | hhcms | |- D e. ( CMet ` ~H ) |