Description: Deduce the structure of Hilbert space from its components. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hilhh.1 | |- ~H = ( BaseSet ` U ) |
|
hilhh.2 | |- +h = ( +v ` U ) |
||
hilhh.3 | |- .h = ( .sOLD ` U ) |
||
hilhh.5 | |- .ih = ( .iOLD ` U ) |
||
hilhh.9 | |- U e. NrmCVec |
||
Assertion | hilhhi | |- U = <. <. +h , .h >. , normh >. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilhh.1 | |- ~H = ( BaseSet ` U ) |
|
2 | hilhh.2 | |- +h = ( +v ` U ) |
|
3 | hilhh.3 | |- .h = ( .sOLD ` U ) |
|
4 | hilhh.5 | |- .ih = ( .iOLD ` U ) |
|
5 | hilhh.9 | |- U e. NrmCVec |
|
6 | 1 4 5 | hilnormi | |- normh = ( normCV ` U ) |
7 | 2 3 6 | nvop | |- ( U e. NrmCVec -> U = <. <. +h , .h >. , normh >. ) |
8 | 5 7 | ax-mp | |- U = <. <. +h , .h >. , normh >. |