Metamath Proof Explorer


Theorem hilhhi

Description: Deduce the structure of Hilbert space from its components. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hilhh.1
|- ~H = ( BaseSet ` U )
hilhh.2
|- +h = ( +v ` U )
hilhh.3
|- .h = ( .sOLD ` U )
hilhh.5
|- .ih = ( .iOLD ` U )
hilhh.9
|- U e. NrmCVec
Assertion hilhhi
|- U = <. <. +h , .h >. , normh >.

Proof

Step Hyp Ref Expression
1 hilhh.1
 |-  ~H = ( BaseSet ` U )
2 hilhh.2
 |-  +h = ( +v ` U )
3 hilhh.3
 |-  .h = ( .sOLD ` U )
4 hilhh.5
 |-  .ih = ( .iOLD ` U )
5 hilhh.9
 |-  U e. NrmCVec
6 1 4 5 hilnormi
 |-  normh = ( normCV ` U )
7 2 3 6 nvop
 |-  ( U e. NrmCVec -> U = <. <. +h , .h >. , normh >. )
8 5 7 ax-mp
 |-  U = <. <. +h , .h >. , normh >.