Metamath Proof Explorer


Theorem hilhl

Description: The Hilbert space of the Hilbert Space Explorer is a complex Hilbert space. (Contributed by Steve Rodriguez, 29-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilhl
|- <. <. +h , .h >. , normh >. e. CHilOLD

Proof

Step Hyp Ref Expression
1 eqid
 |-  <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >.
2 1 hhhl
 |-  <. <. +h , .h >. , normh >. e. CHilOLD