Metamath Proof Explorer


Theorem hilims

Description: Hilbert space distance metric. (Contributed by NM, 13-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hilims.1
|- ~H = ( BaseSet ` U )
hilims.2
|- +h = ( +v ` U )
hilims.3
|- .h = ( .sOLD ` U )
hilims.5
|- .ih = ( .iOLD ` U )
hilims.8
|- D = ( IndMet ` U )
hilims.9
|- U e. NrmCVec
Assertion hilims
|- D = ( normh o. -h )

Proof

Step Hyp Ref Expression
1 hilims.1
 |-  ~H = ( BaseSet ` U )
2 hilims.2
 |-  +h = ( +v ` U )
3 hilims.3
 |-  .h = ( .sOLD ` U )
4 hilims.5
 |-  .ih = ( .iOLD ` U )
5 hilims.8
 |-  D = ( IndMet ` U )
6 hilims.9
 |-  U e. NrmCVec
7 1 2 3 4 6 hilhhi
 |-  U = <. <. +h , .h >. , normh >.
8 7 5 hhims2
 |-  D = ( normh o. -h )