Description: The Hilbert space norm determines a metric space. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hilmet.1 | |- D = ( normh o. -h ) | |
| Assertion | hilmet | |- D e. ( Met ` ~H ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hilmet.1 | |- D = ( normh o. -h ) | |
| 2 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. | |
| 3 | 2 1 | hhims | |- D = ( IndMet ` <. <. +h , .h >. , normh >. ) | 
| 4 | 2 3 | hhmet | |- D e. ( Met ` ~H ) |