Metamath Proof Explorer


Theorem hilmetdval

Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hilmet.1
|- D = ( normh o. -h )
Assertion hilmetdval
|- ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) )

Proof

Step Hyp Ref Expression
1 hilmet.1
 |-  D = ( normh o. -h )
2 eqid
 |-  <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >.
3 2 1 hhims
 |-  D = ( IndMet ` <. <. +h , .h >. , normh >. )
4 2 3 hhmetdval
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) )