Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hilmet.1 | |- D = ( normh o. -h ) |
|
Assertion | hilmetdval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilmet.1 | |- D = ( normh o. -h ) |
|
2 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
3 | 2 1 | hhims | |- D = ( IndMet ` <. <. +h , .h >. , normh >. ) |
4 | 2 3 | hhmetdval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) ) |