Step |
Hyp |
Ref |
Expression |
1 |
|
hilnorm.5 |
|- ~H = ( BaseSet ` U ) |
2 |
|
hilnorm.2 |
|- .ih = ( .iOLD ` U ) |
3 |
|
hilnorm.9 |
|- U e. NrmCVec |
4 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
5 |
1 4 2
|
ipnm |
|- ( ( U e. NrmCVec /\ x e. ~H ) -> ( ( normCV ` U ) ` x ) = ( sqrt ` ( x .ih x ) ) ) |
6 |
3 5
|
mpan |
|- ( x e. ~H -> ( ( normCV ` U ) ` x ) = ( sqrt ` ( x .ih x ) ) ) |
7 |
6
|
mpteq2ia |
|- ( x e. ~H |-> ( ( normCV ` U ) ` x ) ) = ( x e. ~H |-> ( sqrt ` ( x .ih x ) ) ) |
8 |
1 4
|
nvf |
|- ( U e. NrmCVec -> ( normCV ` U ) : ~H --> RR ) |
9 |
8
|
feqmptd |
|- ( U e. NrmCVec -> ( normCV ` U ) = ( x e. ~H |-> ( ( normCV ` U ) ` x ) ) ) |
10 |
3 9
|
ax-mp |
|- ( normCV ` U ) = ( x e. ~H |-> ( ( normCV ` U ) ` x ) ) |
11 |
|
dfhnorm2 |
|- normh = ( x e. ~H |-> ( sqrt ` ( x .ih x ) ) ) |
12 |
7 10 11
|
3eqtr4ri |
|- normh = ( normCV ` U ) |