Description: The Hilbert space norm determines a metric space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hilmet.1 | |- D = ( normh o. -h ) |
|
Assertion | hilxmet | |- D e. ( *Met ` ~H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilmet.1 | |- D = ( normh o. -h ) |
|
2 | 1 | hilmet | |- D e. ( Met ` ~H ) |
3 | metxmet | |- ( D e. ( Met ` ~H ) -> D e. ( *Met ` ~H ) ) |
|
4 | 2 3 | ax-mp | |- D e. ( *Met ` ~H ) |