Description: The Hilbert space norm determines a metric space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hilmet.1 | |- D = ( normh o. -h ) | |
| Assertion | hilxmet | |- D e. ( *Met ` ~H ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hilmet.1 | |- D = ( normh o. -h ) | |
| 2 | 1 | hilmet | |- D e. ( Met ` ~H ) | 
| 3 | metxmet | |- ( D e. ( Met ` ~H ) -> D e. ( *Met ` ~H ) ) | |
| 4 | 2 3 | ax-mp | |- D e. ( *Met ` ~H ) |