| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hicl |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) e. CC ) | 
						
							| 2 |  | cjreb |  |-  ( ( A .ih B ) e. CC -> ( ( A .ih B ) e. RR <-> ( * ` ( A .ih B ) ) = ( A .ih B ) ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( * ` ( A .ih B ) ) = ( A .ih B ) ) ) | 
						
							| 4 |  | eqcom |  |-  ( ( * ` ( A .ih B ) ) = ( A .ih B ) <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) | 
						
							| 5 | 3 4 | bitrdi |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) ) | 
						
							| 6 |  | ax-his1 |  |-  ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) | 
						
							| 8 | 7 | eqeq2d |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = ( B .ih A ) <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) ) | 
						
							| 9 | 5 8 | bitr4d |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( A .ih B ) = ( B .ih A ) ) ) |