Step |
Hyp |
Ref |
Expression |
1 |
|
hicl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) e. CC ) |
2 |
|
cjreb |
|- ( ( A .ih B ) e. CC -> ( ( A .ih B ) e. RR <-> ( * ` ( A .ih B ) ) = ( A .ih B ) ) ) |
3 |
1 2
|
syl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( * ` ( A .ih B ) ) = ( A .ih B ) ) ) |
4 |
|
eqcom |
|- ( ( * ` ( A .ih B ) ) = ( A .ih B ) <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) |
5 |
3 4
|
bitrdi |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) ) |
6 |
|
ax-his1 |
|- ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) |
7 |
6
|
ancoms |
|- ( ( A e. ~H /\ B e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) |
8 |
7
|
eqeq2d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = ( B .ih A ) <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) ) |
9 |
5 8
|
bitr4d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( A .ih B ) = ( B .ih A ) ) ) |