Step |
Hyp |
Ref |
Expression |
1 |
|
hvmulcl |
|- ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
2 |
|
ax-his1 |
|- ( ( B e. ~H /\ ( A .h C ) e. ~H ) -> ( B .ih ( A .h C ) ) = ( * ` ( ( A .h C ) .ih B ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( B e. ~H /\ ( A e. CC /\ C e. ~H ) ) -> ( B .ih ( A .h C ) ) = ( * ` ( ( A .h C ) .ih B ) ) ) |
4 |
3
|
3impb |
|- ( ( B e. ~H /\ A e. CC /\ C e. ~H ) -> ( B .ih ( A .h C ) ) = ( * ` ( ( A .h C ) .ih B ) ) ) |
5 |
4
|
3com12 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( A .h C ) ) = ( * ` ( ( A .h C ) .ih B ) ) ) |
6 |
|
ax-his3 |
|- ( ( A e. CC /\ C e. ~H /\ B e. ~H ) -> ( ( A .h C ) .ih B ) = ( A x. ( C .ih B ) ) ) |
7 |
6
|
3com23 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h C ) .ih B ) = ( A x. ( C .ih B ) ) ) |
8 |
7
|
fveq2d |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( * ` ( ( A .h C ) .ih B ) ) = ( * ` ( A x. ( C .ih B ) ) ) ) |
9 |
|
hicl |
|- ( ( C e. ~H /\ B e. ~H ) -> ( C .ih B ) e. CC ) |
10 |
|
cjmul |
|- ( ( A e. CC /\ ( C .ih B ) e. CC ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
11 |
9 10
|
sylan2 |
|- ( ( A e. CC /\ ( C e. ~H /\ B e. ~H ) ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
12 |
11
|
3impb |
|- ( ( A e. CC /\ C e. ~H /\ B e. ~H ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
13 |
12
|
3com23 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
14 |
|
ax-his1 |
|- ( ( B e. ~H /\ C e. ~H ) -> ( B .ih C ) = ( * ` ( C .ih B ) ) ) |
15 |
14
|
3adant1 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih C ) = ( * ` ( C .ih B ) ) ) |
16 |
15
|
oveq2d |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( * ` A ) x. ( B .ih C ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
17 |
13 16
|
eqtr4d |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( B .ih C ) ) ) |
18 |
5 8 17
|
3eqtrd |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( A .h C ) ) = ( ( * ` A ) x. ( B .ih C ) ) ) |