Step |
Hyp |
Ref |
Expression |
1 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
2 |
|
his5 |
|- ( ( ( * ` A ) e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) ) |
3 |
1 2
|
syl3an1 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) ) |
4 |
|
cjcj |
|- ( A e. CC -> ( * ` ( * ` A ) ) = A ) |
5 |
4
|
oveq1d |
|- ( A e. CC -> ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) = ( A x. ( B .ih C ) ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) = ( A x. ( B .ih C ) ) ) |
7 |
3 6
|
eqtrd |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( A x. ( B .ih C ) ) ) |