| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cjcl |  |-  ( A e. CC -> ( * ` A ) e. CC ) | 
						
							| 2 |  | his5 |  |-  ( ( ( * ` A ) e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) ) | 
						
							| 3 | 1 2 | syl3an1 |  |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) ) | 
						
							| 4 |  | cjcj |  |-  ( A e. CC -> ( * ` ( * ` A ) ) = A ) | 
						
							| 5 | 4 | oveq1d |  |-  ( A e. CC -> ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) = ( A x. ( B .ih C ) ) ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) = ( A x. ( B .ih C ) ) ) | 
						
							| 7 | 3 6 | eqtrd |  |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( A x. ( B .ih C ) ) ) |