| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ax-his4 | 
							 |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							gt0ne0d | 
							 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( A .ih A ) =/= 0 )  | 
						
						
							| 3 | 
							
								2
							 | 
							ex | 
							 |-  ( A e. ~H -> ( A =/= 0h -> ( A .ih A ) =/= 0 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							necon4d | 
							 |-  ( A e. ~H -> ( ( A .ih A ) = 0 -> A = 0h ) )  | 
						
						
							| 5 | 
							
								
							 | 
							hi01 | 
							 |-  ( A e. ~H -> ( 0h .ih A ) = 0 )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							 |-  ( A = 0h -> ( A .ih A ) = ( 0h .ih A ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1d | 
							 |-  ( A = 0h -> ( ( A .ih A ) = 0 <-> ( 0h .ih A ) = 0 ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							syl5ibrcom | 
							 |-  ( A e. ~H -> ( A = 0h -> ( A .ih A ) = 0 ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							impbid | 
							 |-  ( A e. ~H -> ( ( A .ih A ) = 0 <-> A = 0h ) )  |